cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352522 Triangle read by rows where T(n,k) is the number of integer compositions of n with k weak nonexcedances (parts on or below the diagonal).

This page as a plain text file.
%I A352522 #16 Jan 19 2023 22:35:31
%S A352522 1,0,1,1,0,1,1,1,1,1,1,3,1,2,1,2,3,4,3,3,1,3,4,8,6,6,4,1,4,7,12,13,12,
%T A352522 10,5,1,5,13,16,26,24,22,15,6,1,7,19,27,43,48,46,37,21,7,1,10,26,47,
%U A352522 68,90,93,83,58,28,8,1,14,36,77,109,159,180,176,141
%N A352522 Triangle read by rows where T(n,k) is the number of integer compositions of n with k weak nonexcedances (parts on or below the diagonal).
%H A352522 Andrew Howroyd, <a href="/A352522/b352522.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%H A352522 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>.
%e A352522 Triangle begins:
%e A352522    1
%e A352522    0   1
%e A352522    1   0   1
%e A352522    1   1   1   1
%e A352522    1   3   1   2   1
%e A352522    2   3   4   3   3   1
%e A352522    3   4   8   6   6   4   1
%e A352522    4   7  12  13  12  10   5   1
%e A352522    5  13  16  26  24  22  15   6   1
%e A352522    7  19  27  43  48  46  37  21   7   1
%e A352522   10  26  47  68  90  93  83  58  28   8   1
%e A352522 For example, row n = 6 counts the following compositions:
%e A352522   (6)   (15)   (114)  (123)   (1113)   (11112)  (111111)
%e A352522   (24)  (42)   (132)  (1311)  (1122)   (11121)
%e A352522   (33)  (51)   (141)  (2112)  (1131)   (11211)
%e A352522         (231)  (213)  (2121)  (1212)   (12111)
%e A352522                (222)  (2211)  (1221)
%e A352522                (312)  (3111)  (21111)
%e A352522                (321)
%e A352522                (411)
%t A352522 pw[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]];
%t A352522 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pw[#]==k&]],{n,0,15},{k,0,n}]
%o A352522 (PARI) T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>=i,x,1)*v[j-i])); r+=v); [Vecrev(p) | p<-r]}
%o A352522 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 19 2023
%Y A352522 Row sums are A011782.
%Y A352522 The strong version for partitions is A114088.
%Y A352522 The opposite version for partitions is A115994.
%Y A352522 The version for permutations is A123125, strong A173018.
%Y A352522 Column k = 0 is A238874.
%Y A352522 The corresponding rank statistic is A352515.
%Y A352522 The strong version is A352521, first column A219282, rank statistic A352514.
%Y A352522 The strong opposite is A352524, first col A008930, rank statistic A352516.
%Y A352522 The opposite version is A352525, first col A177510, rank statistic A352517.
%Y A352522 A000041 counts integer partitions, strict A000009.
%Y A352522 A008292 is the triangle of Eulerian numbers (version without zeros).
%Y A352522 A238349 counts comps by fixed points, first col A238351, rank stat A352512.
%Y A352522 A352488 lists the weak nonexcedance set of A122111.
%Y A352522 A352523 counts comps by unfixed points, first A352520, rank stat A352513.
%Y A352522 Cf. A088218, A098825, A238352, A352489.
%K A352522 nonn,tabl
%O A352522 0,12
%A A352522 _Gus Wiseman_, Mar 22 2022