This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352522 #16 Jan 19 2023 22:35:31 %S A352522 1,0,1,1,0,1,1,1,1,1,1,3,1,2,1,2,3,4,3,3,1,3,4,8,6,6,4,1,4,7,12,13,12, %T A352522 10,5,1,5,13,16,26,24,22,15,6,1,7,19,27,43,48,46,37,21,7,1,10,26,47, %U A352522 68,90,93,83,58,28,8,1,14,36,77,109,159,180,176,141 %N A352522 Triangle read by rows where T(n,k) is the number of integer compositions of n with k weak nonexcedances (parts on or below the diagonal). %H A352522 Andrew Howroyd, <a href="/A352522/b352522.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %H A352522 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>. %e A352522 Triangle begins: %e A352522 1 %e A352522 0 1 %e A352522 1 0 1 %e A352522 1 1 1 1 %e A352522 1 3 1 2 1 %e A352522 2 3 4 3 3 1 %e A352522 3 4 8 6 6 4 1 %e A352522 4 7 12 13 12 10 5 1 %e A352522 5 13 16 26 24 22 15 6 1 %e A352522 7 19 27 43 48 46 37 21 7 1 %e A352522 10 26 47 68 90 93 83 58 28 8 1 %e A352522 For example, row n = 6 counts the following compositions: %e A352522 (6) (15) (114) (123) (1113) (11112) (111111) %e A352522 (24) (42) (132) (1311) (1122) (11121) %e A352522 (33) (51) (141) (2112) (1131) (11211) %e A352522 (231) (213) (2121) (1212) (12111) %e A352522 (222) (2211) (1221) %e A352522 (312) (3111) (21111) %e A352522 (321) %e A352522 (411) %t A352522 pw[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]]; %t A352522 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pw[#]==k&]],{n,0,15},{k,0,n}] %o A352522 (PARI) T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>=i,x,1)*v[j-i])); r+=v); [Vecrev(p) | p<-r]} %o A352522 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 19 2023 %Y A352522 Row sums are A011782. %Y A352522 The strong version for partitions is A114088. %Y A352522 The opposite version for partitions is A115994. %Y A352522 The version for permutations is A123125, strong A173018. %Y A352522 Column k = 0 is A238874. %Y A352522 The corresponding rank statistic is A352515. %Y A352522 The strong version is A352521, first column A219282, rank statistic A352514. %Y A352522 The strong opposite is A352524, first col A008930, rank statistic A352516. %Y A352522 The opposite version is A352525, first col A177510, rank statistic A352517. %Y A352522 A000041 counts integer partitions, strict A000009. %Y A352522 A008292 is the triangle of Eulerian numbers (version without zeros). %Y A352522 A238349 counts comps by fixed points, first col A238351, rank stat A352512. %Y A352522 A352488 lists the weak nonexcedance set of A122111. %Y A352522 A352523 counts comps by unfixed points, first A352520, rank stat A352513. %Y A352522 Cf. A088218, A098825, A238352, A352489. %K A352522 nonn,tabl %O A352522 0,12 %A A352522 _Gus Wiseman_, Mar 22 2022