This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352523 #25 Mar 21 2025 10:13:21 %S A352523 1,1,0,0,2,0,1,1,2,0,0,4,2,2,0,0,5,5,4,2,0,1,3,12,8,6,2,0,0,7,14,19, %T A352523 14,8,2,0,0,8,21,33,32,22,10,2,0,0,9,30,54,63,54,32,12,2,0,1,6,47,80, %U A352523 116,116,86,44,14,2,0,0,11,53,129,194,229,202,130,58,16,2,0 %N A352523 Number of integer compositions of n with exactly k nonfixed points (parts not on the diagonal). %C A352523 A nonfixed point in a composition c is an index i such that c_i != i. %H A352523 John Tyler Rascoe, <a href="/A352523/b352523.txt">Rows n = 0..130, flattened</a> %F A352523 G.f.: Sum_{i>=0} Product_{j=1..i} y*(x/(1-x) - x^j) + x^j. - _John Tyler Rascoe_, Mar 19 2025 %e A352523 Triangle begins: %e A352523 1 %e A352523 1 0 %e A352523 0 2 0 %e A352523 1 1 2 0 %e A352523 0 4 2 2 0 %e A352523 0 5 5 4 2 0 %e A352523 1 3 12 8 6 2 0 %e A352523 0 7 14 19 14 8 2 0 %e A352523 0 8 21 33 32 22 10 2 0 %e A352523 0 9 30 54 63 54 32 12 2 0 %e A352523 1 6 47 80 116 116 86 44 14 2 0 %e A352523 ... %e A352523 For example, row n = 6 counts the following compositions (empty column indicated by dot): %e A352523 (123) (6) (24) (231) (2112) (21111) . %e A352523 (15) (33) (312) (2121) (111111) %e A352523 (42) (51) (411) (3111) %e A352523 (114) (1113) (11112) %e A352523 (132) (1122) (11121) %e A352523 (141) (1311) (11211) %e A352523 (213) (2211) %e A352523 (222) (12111) %e A352523 (321) %e A352523 (1131) %e A352523 (1212) %e A352523 (1221) %p A352523 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A352523 add(`if`(i=j, 1, x)*b(n-j, i+1), j=1..n))) %p A352523 end: %p A352523 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)): %p A352523 seq(T(n), n=0..12); # _Alois P. Heinz_, Mar 19 2025 %t A352523 pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]]; %t A352523 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pnq[#]==k&]],{n,0,9},{k,0,n}] %o A352523 (PARI) %o A352523 T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= sum(i=0, N, prod(j=1, i, y*(x/(1-x)-x^j)+x^j))); vector(N, n, my(r=Vecrev(polcoeff(h, n-1))); if(n<2, r, concat(r,[0])))} %o A352523 T_xy(10) \\ _John Tyler Rascoe_, Mar 21 2025 %Y A352523 Column k = 0 is A010054. %Y A352523 Row sums are A011782. %Y A352523 The version for permutations is A098825. %Y A352523 The corresponding rank statistic is A352513. %Y A352523 Column k = 1 is A352520. %Y A352523 A238349 and A238350 count comps by fixed points, first col A238351, rank stat A352512. %Y A352523 A352486 gives the nonfixed points of A122111, counted by A330644. %Y A352523 A352521 counts comps by strong nonexcedances, first A219282, stat A352514. %Y A352523 A352522 counts comps by weak nonexcedances, first col A238874, stat A352515. %Y A352523 A352524 counts comps by strong excedances, first col A008930, stat A352516. %Y A352523 A352525 counts comps by weak excedances, first col A177510, stat A352517. %Y A352523 Cf. A000700, A064428, A088218, A114088, A115994, A123125, A173018, A238352. %K A352523 nonn,tabl %O A352523 0,5 %A A352523 _Gus Wiseman_, Mar 26 2022