cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed.

This page as a plain text file.
%I A352524 #17 Jan 02 2023 21:55:12
%S A352524 1,1,1,1,2,2,3,5,6,9,1,11,18,3,21,35,8,41,67,20,80,131,44,1,157,257,
%T A352524 94,4,310,505,197,12,614,996,406,32,1218,1973,825,80,2421,3915,1669,
%U A352524 186,1,4819,7781,3364,415,5,9602,15486,6762,901,17,19147,30855,13567,1918,49
%N A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed.
%H A352524 Andrew Howroyd, <a href="/A352524/b352524.txt">Table of n, a(n) for n = 0..2507</a> (rows 0..200)
%H A352524 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>.
%e A352524 Triangle begins:
%e A352524      1
%e A352524      1
%e A352524      1     1
%e A352524      2     2
%e A352524      3     5
%e A352524      6     9     1
%e A352524     11    18     3
%e A352524     21    35     8
%e A352524     41    67    20
%e A352524     80   131    44     1
%e A352524    157   257    94     4
%e A352524    310   505   197    12
%e A352524    614   996   406    32
%e A352524 For example, row n = 5 counts the following compositions:
%e A352524   (113)    (5)     (23)
%e A352524   (122)    (14)
%e A352524   (1112)   (32)
%e A352524   (1121)   (41)
%e A352524   (1211)   (131)
%e A352524   (11111)  (212)
%e A352524            (221)
%e A352524            (311)
%e A352524            (2111)
%t A352524 pd[y_]:=Length[Select[Range[Length[y]],#<y[[#]]&]];
%t A352524 DeleteCases[Table[Length[Select[Join@@ Permutations/@IntegerPartitions[n],pd[#]==k&]],{n,0,10},{k,0,n}],0,{2}]
%o A352524 (PARI)
%o A352524 S(v,u)={vector(#v, k, sum(i=1, k-1, v[k-i]*u[i]))}
%o A352524 T(n)={my(v=vector(1+n), s); v[1]=1; s=v; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1))); s+=v); [Vecrev(p) | p<-s]}
%o A352524 { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Jan 02 2023
%Y A352524 The version for permutations is A008292, weak A123125.
%Y A352524 Column k = 0 is A008930.
%Y A352524 Row sums are A011782.
%Y A352524 The opposite version for partitions is A114088.
%Y A352524 The weak version for partitions is A115994.
%Y A352524 Column k = 1 is A351983.
%Y A352524 The corresponding rank statistic is A352516.
%Y A352524 The opposite version is A352521, first col A219282, rank statistic A352514.
%Y A352524 The weak opposite version is A352522, first col A238874, rank stat A352515.
%Y A352524 The weak version is A352525, first col (k = 1) A177510, rank stat A352517.
%Y A352524 A238349 counts comps by fixed points, first col A238351, rank stat A352512.
%Y A352524 A352487 lists the excedance set of A122111, opposite A352490.
%Y A352524 A352523 counts comps by unfixed points, first A352520, rank stat A352513.
%Y A352524 Cf. A088218, A098825, A238352, A350839.
%K A352524 nonn,tabf
%O A352524 0,5
%A A352524 _Gus Wiseman_, Mar 22 2022