This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352524 #17 Jan 02 2023 21:55:12 %S A352524 1,1,1,1,2,2,3,5,6,9,1,11,18,3,21,35,8,41,67,20,80,131,44,1,157,257, %T A352524 94,4,310,505,197,12,614,996,406,32,1218,1973,825,80,2421,3915,1669, %U A352524 186,1,4819,7781,3364,415,5,9602,15486,6762,901,17,19147,30855,13567,1918,49 %N A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed. %H A352524 Andrew Howroyd, <a href="/A352524/b352524.txt">Table of n, a(n) for n = 0..2507</a> (rows 0..200) %H A352524 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>. %e A352524 Triangle begins: %e A352524 1 %e A352524 1 %e A352524 1 1 %e A352524 2 2 %e A352524 3 5 %e A352524 6 9 1 %e A352524 11 18 3 %e A352524 21 35 8 %e A352524 41 67 20 %e A352524 80 131 44 1 %e A352524 157 257 94 4 %e A352524 310 505 197 12 %e A352524 614 996 406 32 %e A352524 For example, row n = 5 counts the following compositions: %e A352524 (113) (5) (23) %e A352524 (122) (14) %e A352524 (1112) (32) %e A352524 (1121) (41) %e A352524 (1211) (131) %e A352524 (11111) (212) %e A352524 (221) %e A352524 (311) %e A352524 (2111) %t A352524 pd[y_]:=Length[Select[Range[Length[y]],#<y[[#]]&]]; %t A352524 DeleteCases[Table[Length[Select[Join@@ Permutations/@IntegerPartitions[n],pd[#]==k&]],{n,0,10},{k,0,n}],0,{2}] %o A352524 (PARI) %o A352524 S(v,u)={vector(#v, k, sum(i=1, k-1, v[k-i]*u[i]))} %o A352524 T(n)={my(v=vector(1+n), s); v[1]=1; s=v; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1))); s+=v); [Vecrev(p) | p<-s]} %o A352524 { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Jan 02 2023 %Y A352524 The version for permutations is A008292, weak A123125. %Y A352524 Column k = 0 is A008930. %Y A352524 Row sums are A011782. %Y A352524 The opposite version for partitions is A114088. %Y A352524 The weak version for partitions is A115994. %Y A352524 Column k = 1 is A351983. %Y A352524 The corresponding rank statistic is A352516. %Y A352524 The opposite version is A352521, first col A219282, rank statistic A352514. %Y A352524 The weak opposite version is A352522, first col A238874, rank stat A352515. %Y A352524 The weak version is A352525, first col (k = 1) A177510, rank stat A352517. %Y A352524 A238349 counts comps by fixed points, first col A238351, rank stat A352512. %Y A352524 A352487 lists the excedance set of A122111, opposite A352490. %Y A352524 A352523 counts comps by unfixed points, first A352520, rank stat A352513. %Y A352524 Cf. A088218, A098825, A238352, A350839. %K A352524 nonn,tabf %O A352524 0,5 %A A352524 _Gus Wiseman_, Mar 22 2022