cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352525 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k weak excedances (parts on or above the diagonal), all zeros removed.

This page as a plain text file.
%I A352525 #12 Jan 19 2023 22:35:26
%S A352525 1,1,2,3,1,5,3,8,8,14,17,1,25,35,4,46,70,12,87,137,32,167,268,76,1,
%T A352525 324,525,170,5,634,1030,367,17,1248,2026,773,49,2466,3999,1598,129,
%U A352525 4887,7914,3267,315,1,9706,15695,6631,730,6,19308,31181,13393,1631,23
%N A352525 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k weak excedances (parts on or above the diagonal), all zeros removed.
%H A352525 Andrew Howroyd, <a href="/A352525/b352525.txt">Table of n, a(n) for n = 0..2489</a> (rows 0..200)
%H A352525 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>.
%e A352525 Triangle begins:
%e A352525      1
%e A352525      1
%e A352525      2
%e A352525      3     1
%e A352525      5     3
%e A352525      8     8
%e A352525     14    17     1
%e A352525     25    35     4
%e A352525     46    70    12
%e A352525     87   137    32
%e A352525    167   268    76     1
%e A352525    324   525   170     5
%e A352525 For example, row n = 6 counts the following compositions:
%e A352525   (6)       (15)     (123)
%e A352525   (51)      (24)
%e A352525   (312)     (33)
%e A352525   (411)     (42)
%e A352525   (1113)    (114)
%e A352525   (1122)    (132)
%e A352525   (2112)    (141)
%e A352525   (2121)    (213)
%e A352525   (3111)    (222)
%e A352525   (11112)   (231)
%e A352525   (11121)   (321)
%e A352525   (11211)   (1131)
%e A352525   (21111)   (1212)
%e A352525   (111111)  (1221)
%e A352525             (1311)
%e A352525             (2211)
%e A352525             (12111)
%t A352525 pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]];
%t A352525 DeleteCases[Table[Length[Select[Join@@ Permutations/@IntegerPartitions[n],pdw[#]==k&]],{n,0,10},{k,0,n}],0,{2}]
%o A352525 (PARI) T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k<=i,x,1)*v[j-i])); r+=v); r[1]=x; [Vecrev(p) | p<-r/x]}
%o A352525 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 19 2023
%Y A352525 Row sums are A011782.
%Y A352525 The version for partitions is A115994.
%Y A352525 The version for permutations is A123125, strong A173018.
%Y A352525 Column k = 1 is A177510.
%Y A352525 The corresponding rank statistic is A352517.
%Y A352525 The strong opposite is A352521, first col A219282, rank statistic A352514.
%Y A352525 The opposite version is A352522, first col A238874, rank statistic A352515.
%Y A352525 The strong version is A352524, first column A008930, rank statistic A352516.
%Y A352525 A008292 is the triangle of Eulerian numbers (version without zeros).
%Y A352525 A238349 counts comps by fixed points, first col A238351, rank stat A352512.
%Y A352525 A352489 lists the weak excedance set of A122111.
%Y A352525 A352523 counts comps by unfixed points, first A352520, rank stat A352513.
%Y A352525 Cf. A088218, A098825, A114088, A238352, A319005, A350839, A352488.
%K A352525 nonn,tabf
%O A352525 0,3
%A A352525 _Gus Wiseman_, Mar 22 2022