This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352525 #12 Jan 19 2023 22:35:26 %S A352525 1,1,2,3,1,5,3,8,8,14,17,1,25,35,4,46,70,12,87,137,32,167,268,76,1, %T A352525 324,525,170,5,634,1030,367,17,1248,2026,773,49,2466,3999,1598,129, %U A352525 4887,7914,3267,315,1,9706,15695,6631,730,6,19308,31181,13393,1631,23 %N A352525 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k weak excedances (parts on or above the diagonal), all zeros removed. %H A352525 Andrew Howroyd, <a href="/A352525/b352525.txt">Table of n, a(n) for n = 0..2489</a> (rows 0..200) %H A352525 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>. %e A352525 Triangle begins: %e A352525 1 %e A352525 1 %e A352525 2 %e A352525 3 1 %e A352525 5 3 %e A352525 8 8 %e A352525 14 17 1 %e A352525 25 35 4 %e A352525 46 70 12 %e A352525 87 137 32 %e A352525 167 268 76 1 %e A352525 324 525 170 5 %e A352525 For example, row n = 6 counts the following compositions: %e A352525 (6) (15) (123) %e A352525 (51) (24) %e A352525 (312) (33) %e A352525 (411) (42) %e A352525 (1113) (114) %e A352525 (1122) (132) %e A352525 (2112) (141) %e A352525 (2121) (213) %e A352525 (3111) (222) %e A352525 (11112) (231) %e A352525 (11121) (321) %e A352525 (11211) (1131) %e A352525 (21111) (1212) %e A352525 (111111) (1221) %e A352525 (1311) %e A352525 (2211) %e A352525 (12111) %t A352525 pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]]; %t A352525 DeleteCases[Table[Length[Select[Join@@ Permutations/@IntegerPartitions[n],pdw[#]==k&]],{n,0,10},{k,0,n}],0,{2}] %o A352525 (PARI) T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k<=i,x,1)*v[j-i])); r+=v); r[1]=x; [Vecrev(p) | p<-r/x]} %o A352525 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 19 2023 %Y A352525 Row sums are A011782. %Y A352525 The version for partitions is A115994. %Y A352525 The version for permutations is A123125, strong A173018. %Y A352525 Column k = 1 is A177510. %Y A352525 The corresponding rank statistic is A352517. %Y A352525 The strong opposite is A352521, first col A219282, rank statistic A352514. %Y A352525 The opposite version is A352522, first col A238874, rank statistic A352515. %Y A352525 The strong version is A352524, first column A008930, rank statistic A352516. %Y A352525 A008292 is the triangle of Eulerian numbers (version without zeros). %Y A352525 A238349 counts comps by fixed points, first col A238351, rank stat A352512. %Y A352525 A352489 lists the weak excedance set of A122111. %Y A352525 A352523 counts comps by unfixed points, first A352520, rank stat A352513. %Y A352525 Cf. A088218, A098825, A114088, A238352, A319005, A350839, A352488. %K A352525 nonn,tabf %O A352525 0,3 %A A352525 _Gus Wiseman_, Mar 22 2022