This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352537 #9 Mar 20 2022 06:44:26 %S A352537 2,3,919,1223,1699,3329,8009,11717,13691,19079,20921,21011,22643, %T A352537 22739,24623,26309,28571,28619,28979,30389,33629,34739,35257,41179, %U A352537 42577,48647,54133,58601,59627,61511,65171,70979,75707,80141,84221,86869,90677,93557,94781 %N A352537 Primes whose position in the Wythoff array is immediately followed by a prime both in the next column and the next row. %e A352537 The Wythoff array begins: %e A352537 1 2 3 5 ... %e A352537 4 7 11 18 ... %e A352537 6 10 16 26 ... %e A352537 ... %e A352537 where one can see these 2 patterns: %e A352537 2 3 and 3 5 %e A352537 7 11 %e A352537 so 2 and 3 are terms. %o A352537 (PARI) T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513 %o A352537 cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break););); %o A352537 isokp(m) = my(pos = cell(prime(m))); isprime (T(pos[1], pos[2]+1)) && isprime(T(pos[1]+1, pos[2])); %o A352537 lista(nn) = for (n=1, nn, if (isokp(n), print1(prime(n), ", "))); %Y A352537 Cf. A003603, A035612, A035513 (Wythoff array). %Y A352537 Intersection of A352538 and A352539. %K A352537 nonn %O A352537 1,1 %A A352537 _Michel Marcus_, Mar 20 2022