cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352538 Primes whose position in the Wythoff array is immediately followed by another prime in the next column.

This page as a plain text file.
%I A352538 #19 Dec 26 2024 08:33:06
%S A352538 2,3,7,19,23,29,67,97,103,107,149,181,227,271,311,353,379,433,449,563,
%T A352538 631,719,761,883,919,941,971,997,1049,1087,1223,1291,1297,1427,1447,
%U A352538 1453,1531,1601,1627,1699,1753,1831,1861,1877,2039,2207,2213,2239,2269,2281,2287
%N A352538 Primes whose position in the Wythoff array is immediately followed by another prime in the next column.
%e A352538 The Wythoff array begins:
%e A352538    1    2    3    5    8 ...
%e A352538    4    7   11   18   29 ...
%e A352538    6   10   16   26   42 ...
%e A352538    ...
%e A352538 So 2, 3 and 7 are terms, since they are horizontally followed by 3, 5 and 11.
%o A352538 (PARI) T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
%o A352538 cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break);););
%o A352538 isokh(m) = {my(pos = cell(prime(m))); isprime (T(pos[1], pos[2]+1))};
%o A352538 lista(nn) = for (n=1, nn, if (isokh(n), print1(prime(n), ", ")));
%o A352538 (PARI) right(n) = n++; (sqrtint(5*n^2)+n-2)\2; \\ see A022342
%o A352538 isokh(n) = isprime(right(n));
%o A352538 lista(nn) = for (n=1, nn, my(p=prime(n)); if (isokh(p), print1(p, ", ")));
%Y A352538 Cf. A003603, A022342, A035612, A035513 (Wythoff array).
%Y A352538 Cf. A352537 (next row and column), A352539 (next row).
%K A352538 nonn
%O A352538 1,1
%A A352538 _Michel Marcus_, Mar 20 2022