cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352539 Primes whose position in the Wythoff array is immediately followed by another prime in the next row.

This page as a plain text file.
%I A352539 #13 Jan 25 2024 07:55:21
%S A352539 2,3,13,17,59,71,101,157,347,359,401,683,821,881,919,1063,1223,1613,
%T A352539 1699,1787,1931,2081,2333,2663,2711,2909,2999,3011,3299,3329,3371,
%U A352539 3389,3623,3821,3911,4019,4049,4337,4349,4481,4931,5171,5273,5651,5741,5849,5879,6029,6079
%N A352539 Primes whose position in the Wythoff array is immediately followed by another prime in the next row.
%e A352539 The Wythoff array begins:
%e A352539    1    2    3    5    8   13  ...
%e A352539    4    7   11   18   29   47  ...
%e A352539    6   10   16   26   42   68  ...
%e A352539    ...
%e A352539 So 2, 3 and 13 are terms since they are vertically followed by 7, 11 and 47.
%o A352539 (PARI)
%o A352539 T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
%o A352539 cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break);););
%o A352539 isokv(m) = my(pos = cell(prime(m))); isprime (T(pos[1]+1, pos[2]));
%o A352539 lista(nn) = for (n=1, nn, if (isokv(n), print1(prime(n), ", ")));
%Y A352539 Cf. A003603, A035612, A035513 (Wythoff array).
%Y A352539 Cf. A352537 (next row and column), A352538 (next column).
%K A352539 nonn
%O A352539 1,1
%A A352539 _Michel Marcus_, Mar 20 2022