This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352539 #13 Jan 25 2024 07:55:21 %S A352539 2,3,13,17,59,71,101,157,347,359,401,683,821,881,919,1063,1223,1613, %T A352539 1699,1787,1931,2081,2333,2663,2711,2909,2999,3011,3299,3329,3371, %U A352539 3389,3623,3821,3911,4019,4049,4337,4349,4481,4931,5171,5273,5651,5741,5849,5879,6029,6079 %N A352539 Primes whose position in the Wythoff array is immediately followed by another prime in the next row. %e A352539 The Wythoff array begins: %e A352539 1 2 3 5 8 13 ... %e A352539 4 7 11 18 29 47 ... %e A352539 6 10 16 26 42 68 ... %e A352539 ... %e A352539 So 2, 3 and 13 are terms since they are vertically followed by 7, 11 and 47. %o A352539 (PARI) %o A352539 T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513 %o A352539 cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break););); %o A352539 isokv(m) = my(pos = cell(prime(m))); isprime (T(pos[1]+1, pos[2])); %o A352539 lista(nn) = for (n=1, nn, if (isokv(n), print1(prime(n), ", "))); %Y A352539 Cf. A003603, A035612, A035513 (Wythoff array). %Y A352539 Cf. A352537 (next row and column), A352538 (next column). %K A352539 nonn %O A352539 1,1 %A A352539 _Michel Marcus_, Mar 20 2022