A352550 a(n) = number of modules with n elements over the ring of integers in the real quadratic field of discriminant 5.
1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Links
- Don Zagier, On the Number of n-Element Modules Over the Ring of Integers in a Quadratic Number Field [Based on email to N. J. A. Sloane, March 18 2022]
Programs
-
PARI
\\ Don Zagier, Mar 18 2022 PZ(D,m=20) = Z=dirmul(vector(m,n,1),vD=vector(m,n,kronecker(D,n))); v=Z; \ for(j=2,log(m)/log(2), V=v*0;for(k=1,m^(1/j),V[k^j]=Z[k]);v=dirmul(v,V)); v PZ(5,100)