cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352566 a(n) = number of modules with n elements over the ring of integers in the imaginary quadratic field of discriminant -15.

Table of values

n a(n)
1 1
2 2
3 1
4 5
5 1
6 2
7 0
8 10
9 2
10 2
11 0
12 5
13 0
14 0
15 1
16 20
17 2
18 4
19 2
20 5
21 0
22 0
23 2
24 10
25 2
26 0
27 3
28 0
29 0
30 2
31 2
32 36
33 0
34 4
35 0
36 10
37 0
38 4
39 0
40 10
41 0
42 0
43 0
44 0
45 2
46 4
47 2
48 20
49 1
50 4
51 2
52 0
53 2
54 6
55 0
56 0
57 2
58 0
59 0
60 5
61 2
62 4
63 0
64 65
65 0
66 0
67 0
68 10
69 2
70 0
71 0
72 20
73 0
74 0
75 2
76 10
77 0
78 0
79 2
80 20
81 5
82 0
83 2
84 0
85 2
86 0
87 0
88 0
89 0
90 4
91 0
92 10
93 2
94 4
95 2
96 36
97 0
98 2
99 0
100 10
101 0
102 4
103 0
104 0
105 0
106 4
107 2
108 15
109 2
110 0
111 0
112 0

List of values

[1, 2, 1, 5, 1, 2, 0, 10, 2, 2, 0, 5, 0, 0, 1, 20, 2, 4, 2, 5, 0, 0, 2, 10, 2, 0, 3, 0, 0, 2, 2, 36, 0, 4, 0, 10, 0, 4, 0, 10, 0, 0, 0, 0, 2, 4, 2, 20, 1, 4, 2, 0, 2, 6, 0, 0, 2, 0, 0, 5, 2, 4, 0, 65, 0, 0, 0, 10, 2, 0, 0, 20, 0, 0, 2, 10, 0, 0, 2, 20, 5, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 10, 2, 4, 2, 36, 0, 2, 0, 10, 0, 4, 0, 0, 0, 4, 2, 15, 2, 0, 0, 0]