cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352581 Numbers k such that A001414(k+1) = A001414(k)+1 and A001414(k)^2+3*A001414(k)+1 is prime.

Original entry on oeis.org

2, 3, 4, 20, 24, 1104, 1274, 2079, 4345, 13775, 14905, 20220, 23408, 25592, 35167, 49230, 61456, 66585, 68479, 75648, 76640, 121539, 172255, 194403, 200384, 229581, 233090, 236282, 238017, 247475, 263145, 283590, 287615, 295274, 295640, 326451, 386169, 422065, 429385, 429802, 475968, 585310
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 21 2022

Keywords

Comments

Numbers k such that A001414(k+1) = A001414(k)+1 and (A001414(k)+1)*(A001414(k+1)+1)-1 is prime.

Examples

			a(4) = 20 is a term because A001414(20) = 9, A001414(21) = 10 = 9+1, and 10*11-1 = 109 is prime.
		

Crossrefs

Intersection of A228126 and A352580. Cf. A001414.

Programs

  • Maple
    spf:= proc(n) local t; option remember; add(t[1]*t[2], t=ifactors(n)[2]) end proc:
    select(t -> (spf(t+1) = spf(t)+1) and isprime(spf(t)^2 + 3*spf(t)+1), [$1..10^6]);