This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352582 #32 Mar 26 2022 22:45:16 %S A352582 3,3,11,76,49,2432,113,9980,55,748,166,9420,384,39780,130,2388,271, %T A352582 10640,867,82592,1054,103040,548,11828,578,12332,4874,1113600,2461, %U A352582 196380,1137,27932,2426,128944,1393,35708,16086,5861020,2052,54268,9154,1437780,7981,982208 %N A352582 Two-column array read by rows, where the n-th row is the least pair of integers (p, q) such that f(p) = f(n) + q*f(n+1) where f(n) = A002496(n) is the n-th prime of the form k^2+1. %C A352582 For given n, it seems there is an infinity of pairs (p,q) = (p0,q0), (p1, q1), (p2, q2), ... where p is the smallest p and q the smallest q: p=p0=min(p0, p1, p2, ...) and q = q0=min(q0, q1, ...). %C A352582 Conjecture: Given an integer n, there always exists a pair (p, q) such that f(p) = f(n) + q*f(n+1). %C A352582 Consequence: if the conjecture is true, then the set of prime numbers of the form k^2+1 is infinite because, by induction, there exists a pair (p', q') such that f(p') = f(p-1) + q'*f(p), f(p') > f(p). %H A352582 Michel Lagneau, <a href="/A352582/a352582.pdf">90 first pairs (p,q)</a> %e A352582 The pair (11, 76) is in the sequence because A002496(11) = A002496(2) + 76*A002496(3) and 1297=5+76*17. %e A352582 +----+------+-----+------+---------------------------------------------+ %e A352582 | n | f(n) | p | q | f(p)=f(n)+q*f(n+1) | %e A352582 +----+------+-----+------+----------------------+----------------------+ %e A352582 | 1 | 2 | 3 | 3 | f(3)=f(1)+3*f(2) | 17=2+3*5 | %e A352582 | 2 | 5 | 11 | 76 | f(11)=f(2)+76*f(3) | 1297=5+76*17 | %e A352582 | 3 | 17 | 49 | 2432 | f(49)=f(3)+2432*f(4) | 90001=17+2432*37 | %e A352582 | 4 | 37 | 113 | 9980 | f(113)=f(4)+9980*f(5)| 1008017=37+9980*101 | %e A352582 | 5 | 101 | 55 | 748 | f(55)=f(5)+748*f(6) | 147457=101+748*197 | %e A352582 | 6 | 197 | 166 | 9420 | f(166)=f(6)+9420*f(7)| 2421137=197+9420*257 | %p A352582 T:=array(1..30000):k:=0: %p A352582 nn:=500000: %p A352582 for m from 1 to nn do: %p A352582 if isprime(m^2+1) %p A352582 then %p A352582 k:=k+1:T[k]:=m^2+1: %p A352582 else %p A352582 fi: %p A352582 od: %p A352582 for n from 1 to 32 do: %p A352582 ii:=0:r:=T[n]:q:=T[n+1]: %p A352582 for i from 1 to k while(ii=0) do: %p A352582 p:=T[i]:r1:=irem(p,q): %p A352582 if r1=r and p>q %p A352582 then %p A352582 ii:=1:x:=(T[i]-T[n])/T[n+1]:printf(`%d, `,i): %p A352582 printf(`%d, `,x): %p A352582 else %p A352582 fi: %p A352582 od: %p A352582 od: %Y A352582 Cf. A002496, A348598. %K A352582 nonn,tabf %O A352582 1,1 %A A352582 _Michel Lagneau_, Mar 21 2022