cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352583 a(n) is the value of the cell in the Wythoff array that lies in the next row and same column as the cell containing n.

This page as a plain text file.
%I A352583 #11 Jun 05 2022 08:32:32
%S A352583 4,7,11,6,18,9,10,29,12,15,16,14,47,17,20,24,19,26,22,23,76,25,28,32,
%T A352583 27,39,30,31,42,33,36,37,35,123,38,41,45,40,52,43,44,63,46,49,50,48,
%U A352583 68,51,54,58,53,60,56,57,199,59,62,66,61,73,64,65,84,67,70,71,69,102,72,75
%N A352583 a(n) is the value of the cell in the Wythoff array that lies in the next row and same column as the cell containing n.
%C A352583 From _Kevin Ryde_, Jun 05 2022: (Start)
%C A352583 a(n) is n with the "odd" part (A348853) of its Zeckendorf representation increased to the next greater "odd" number.
%C A352583 This increase is Zeckendorf digits +10 or +100 at the odd part, according to whether the final digits there are ..101 or ..001, respectively.
%C A352583 A354321(n) is the first of those three digits so that a(n) = n + Fibonacci(A035612(n) + 3 - A354321(n)).
%C A352583 (End)
%e A352583 The Wythoff array (A035513 or A083412) begins:
%e A352583    1    2    3    5    8 ...
%e A352583    4    7   11   18   29 ...
%e A352583    6   10   16   26   42 ...
%e A352583    ...
%e A352583 so a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 6, ...
%o A352583 (PARI) T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
%o A352583 cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break););); \\ see A003603 and A035612
%o A352583 a(n) = {my(pos = cell(n)); T(pos[1]+1, pos[2]);}
%o A352583 (PARI) { my(phi=quadgen(5),s=phi-1,c=2*phi-3);
%o A352583 a(n) = my(t=n,k=3,r);
%o A352583   until(r<s, [t,r]=divrem(t+1,phi); k++);
%o A352583   n + fibonacci(k - (r<c)); }
%Y A352583 Cf. A035513 and A083412 (Wythoff array), A003603 (row number), A035612 (column number).
%Y A352583 Cf. A348853 (odd part), A354321 (above 01), A000045 (Fibonacci numbers).
%Y A352583 Cf. A022342 (same row, next column).
%Y A352583 Cf. A349102 (binary increase odd).
%K A352583 nonn,easy
%O A352583 1,1
%A A352583 _Michel Marcus_, Mar 21 2022