cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A352612 (n-1)*prod(-p^2 where 2 <= p <= n-2 is prime and relatively prime to n)*prod(k where both k and (n-k) are composite and relatively prime to n) (mod n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 7, 4, 9, 10, 11, 4, 9, 11, 1, 16, 17, 4, 1, 17, 17, 22, 23, 4, 1, 26, 1, 28, 29, 4, 17, 29, 25, 1, 25, 36, 11, 35, 39, 40, 25, 4, 7, 41, 27, 46, 23, 4, 31, 1, 23, 52, 1, 51, 55, 1, 49, 58, 1, 4, 37, 59, 55, 1, 49, 66, 33, 65, 31, 70, 25, 4
Offset: 1

Views

Author

Craig J. Beisel, Mar 23 2022

Keywords

Comments

The convention for the empty product here is 1. The second product exists for all numbers greater than 210. See A141098.
Conjecture: For odd n, if a(n) == -1 (mod n) then n must be a prime power.

Examples

			For n=6 there are no prime totatives between 2 and 4 and there are also no composite totative pairs which add to 6 so both products do not exist and a(6)=n-1=5.
For n=25 these products exist and are given -44618574^2*12096 == 4 (mod 25). Therefore, a(25)=4.
		

Crossrefs

Programs

  • PARI
    a(n)= {prod_p=1; prod_r=1; for(k=2, n-2, if(gcd(k,n)==1, if(isprime(k), prod_p=prod_p*k*(n-k); ); if(!isprime(k) && !isprime(n-k), prod_r=prod_r*k; );); ); (-prod_p*prod_r)%n; }
Showing 1-1 of 1 results.