cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352588 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that is coprime to a(n-1) but does not equal a(n-1)+1.

Original entry on oeis.org

1, 2, 5, 3, 7, 4, 9, 8, 11, 6, 13, 10, 17, 12, 19, 14, 23, 15, 22, 21, 16, 25, 18, 29, 20, 27, 26, 31, 24, 35, 32, 37, 28, 33, 38, 41, 30, 43, 34, 39, 44, 47, 36, 49, 40, 51, 46, 45, 52, 55, 42, 53, 48, 59, 50, 57, 56, 61, 54, 65, 58, 63, 62, 67, 60, 71, 64, 69, 68, 73, 66, 79, 70, 81, 74, 77
Offset: 1

Views

Author

Scott R. Shannon, Apr 29 2022

Keywords

Comments

Theorem: This is a permutation of the natural numbers. The proof is essentially the same as for A093714. - N. J. A. Sloane, May 02 2022
Coincides with A093714 for n >= 17. - Scott R. Shannon, May 02 2022.
In the first 100 million terms the sequence's values are concentrated along the line a(n) = n, resulting in 1160 fixed points in this range. However the last fixed point in this range is a(1034312), with the sequence oscillating above and below the line a(n) = n from then on. It is unknown if this behavior continues or if more fixed points eventually appear.
The largest offset in the first 100 million terms from the line a(n) = n is a(45902952) = 45902981, with an offset of 29. In this range a number is rejected as the next term on 207 occasions as it equals a(n-1)+1.
Beyond a(4) = 3 the primes appear in their natural order.
From Michael De Vlieger, May 01 2022: (Start)
Theorem: if prime p | a(n-1) then p does not divide a(n). Proof: primes either divide or are coprime to a given number. We say numbers m and n are coprime iff gcd(m,n) = 1. Suppose p | a(n-1) and p | a(n), then p | m, where m = gcd(a(n-1), a(n)). By definition of prime and divisor, m > 1, a contradiction.
Corollary: even terms do not appear adjacently in the sequence, however we may have runs of odd terms.
Theorem: fixed point a(n) = n implies a(n) and n have the same parity. Proof: a(n) = n iff a(n) mod n = 0, since n | n. Suppose prime q|n yet gcd(a(n), q) = 1, then a(n) != n, a contradiction.
Observation: there are 9 runs of odd terms for n = 1..2^28, one of 3 odd terms {5, 3, 7}, the rest of 2. Fixed points appear in intervals [1, 3], [4, 17], [78, 1787], [15022, 38123], and [45053, 1036043]. The last run of odd terms for n <= 2^28 begins at n = 1036043. Is there another run of odd terms that will begin a new interval that harbors fixed points? (End)

Examples

			a(3) = 5 as a(2) = 2, and the smallest unused number coprime to 2 that does not equal 2+1=3 is 5.
		

Crossrefs

Programs

  • Mathematica
    nn = 76; c[_] = 0; a[1] = c[1] = 1; a[2] = c[2] = 2; u = 3
    Do[k = u; While[Nand[c[k] == 0, CoprimeQ[#, k], k != # + 1], k++] &@ a[i - 1]; Set[{a[i], c[k]}, {k, i}]; If[a[i] == u, While[c[u] > 0, u++]], {i, 3, nn}]; Array[a, nn] (* Michael De Vlieger, May 01 2022 *)