cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352590 Number of tilings of a 4 X n rectangle using 2 X 2 and 1 X 1 tiles and dominoes.

This page as a plain text file.
%I A352590 #10 Feb 27 2023 09:17:10
%S A352590 1,5,90,1125,15623,210690,2865581,38879777,527889422,7165926641,
%T A352590 97281018915,1320614646178,17927775213129,243375024977525,
%U A352590 3303891838175262,44851355548842869,608871075513683799,8265613771134660506,112208272012556064101,1523262112532452904985
%N A352590 Number of tilings of a 4 X n rectangle using 2 X 2 and 1 X 1 tiles and dominoes.
%C A352590 The sequence is based on A352589.
%H A352590 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (11,50,-189,-289,1164,-408,-1010,576,216,-120).
%F A352590 G.f.: (1-6*x-15*x^2+74*x^3-18*x^4-122*x^5+64*x^6+48*x^7-24*x^8) / (1-11*x-50*x^2+189*x^3+289*x^4-1164*x^5+408*x^6+1010*x^7-576*x^8-216*x^9+120*x^10).
%F A352590 Recurrence: a(n)=11*a(n-1) + 50*a(n-2) - 189*a(n-3) - 289*a(n-4) + 1164*a(n-5) - 408*a(n-6) - 1010*a(n-7) + 576*a(n-8) + 216*a(n-9) - 120*a(n-10).
%t A352590 CoefficientList[Series[(1-6x-15x^2+74x^3-18x^4-122x^5+64x^6+48x^7-24x^8)/(1-11x-50x^2+189x^3+289x^4-1164x^5+408x^6+1010x^7-576x^8-216x^9+120x^10),{x,0,20}],x] (* or *) LinearRecurrence[{11,50,-189,-289,1164,-408,-1010,576,216,-120},{1,5,90,1125,15623,210690,2865581,38879777,527889422,7165926641},30] (* _Harvey P. Dale_, Feb 27 2023 *)
%Y A352590 Cf. A352589, A352591.
%K A352590 nonn,easy
%O A352590 0,2
%A A352590 _Gerhard Kirchner_, Mar 22 2022