This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352595 #8 Mar 26 2022 14:50:11 %S A352595 256,324,576,3600,11664,15876,20736,44100,63504,65536,129600,2822400, %T A352595 5308416,7290000,8294400 %N A352595 Positive integers that are fixed points for the map x->f^k(x) for some k>1, where f(x) is the product of squares of nonzero digits of x. %C A352595 f(x) = A352598(x). %C A352595 Fixed points of f(x) are in A115385. %C A352595 64524128256, 386983526400, 849346560000, 49787136000000, 55725627801600 are also terms. %e A352595 256 -> 3600 -> 324 -> 576 -> 44100 -> 256 is a limit cycle of f, so all elements are terms. %o A352595 (Python) %o A352595 from math import prod %o A352595 from itertools import count, islice %o A352595 def f(n): return prod(int(d)**2 for d in str(n) if d != "0") %o A352595 def ok(n): %o A352595 n0, k, seen = n, 0, set(), %o A352595 while n not in seen: # iterate until fixed point or in cycle %o A352595 seen.add(n) %o A352595 n = f(n) %o A352595 k += 1 %o A352595 return n == n0 and k > 1 %o A352595 def agen(startk=1): %o A352595 for m in count(1): %o A352595 if ok(m): yield m %o A352595 print(list(islice(agen(), 11))) %Y A352595 Subsequence of the intersection of A000290 and A002473. %Y A352595 Cf. A115385, A351327, A352598. %K A352595 nonn,base,more %O A352595 1,1 %A A352595 _Michael S. Branicky_, Mar 24 2022