A352607 Triangle read by rows. T(n, k) = Bell(k)*Sum_{j=0..k}(-1)^(k+j)*binomial(n, n-k+j)*Stirling2(n-k+j, j) for n >= 0 and 0 <= k <= floor(n/2).
1, 0, 0, 1, 0, 1, 0, 1, 6, 0, 1, 20, 0, 1, 50, 75, 0, 1, 112, 525, 0, 1, 238, 2450, 1575, 0, 1, 492, 9590, 18900, 0, 1, 1002, 34125, 141750, 49140, 0, 1, 2024, 114675, 854700, 900900, 0, 1, 4070, 371580, 4544925, 9909900, 2110185
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0; [2] 0, 1; [3] 0, 1; [4] 0, 1, 6; [5] 0, 1, 20; [6] 0, 1, 50, 75; [7] 0, 1, 112, 525; [8] 0, 1, 238, 2450, 1575; [9] 0, 1, 492, 9590, 18900;
Programs
-
Maple
A352607 := (n, k) -> combinat:-bell(k)*add((-1)^(k+j)*binomial(n, n-k+j)* Stirling2(n-k+j, j), j = 0..k): seq(seq(A352607(n, k), k = 0..n/2), n = 0..12); # Second program: egf := k -> combinat[bell](k)*(exp(x) - 1 - x)^k/k!: A352607 := (n, k) -> n! * coeff(series(egf(k), x, n+1), x, n): seq(print(seq(A352607(n, k), k = 0..n/2)), n=0..12); # Recurrence: A352607 := proc(n, k) option remember; if k > n/2 then 0 elif k = 0 then k^n else k*A352607(n-1, k) + combinat[bell](k)/combinat[bell](k-1)*(n-1)*A352607(n-2, k-1) fi end: seq(print(seq(A352607(n, k), k=0..n/2)), n=0..12); # Mélika Tebni, Mar 24 2022
-
Mathematica
T[n_, k_] := BellB[k]*Sum[(-1)^(k+j)*Binomial[n, n-k+j]*StirlingS2[n-k+j, j], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 21 2023 *)