cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352607 Triangle read by rows. T(n, k) = Bell(k)*Sum_{j=0..k}(-1)^(k+j)*binomial(n, n-k+j)*Stirling2(n-k+j, j) for n >= 0 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 6, 0, 1, 20, 0, 1, 50, 75, 0, 1, 112, 525, 0, 1, 238, 2450, 1575, 0, 1, 492, 9590, 18900, 0, 1, 1002, 34125, 141750, 49140, 0, 1, 2024, 114675, 854700, 900900, 0, 1, 4070, 371580, 4544925, 9909900, 2110185
Offset: 0

Views

Author

Peter Luschny and Mélika Tebni, Mar 23 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 1;
[4] 0, 1,   6;
[5] 0, 1,  20;
[6] 0, 1,  50,   75;
[7] 0, 1, 112,  525;
[8] 0, 1, 238, 2450,  1575;
[9] 0, 1, 492, 9590, 18900;
		

Crossrefs

Cf. A028248 (row sums), A052515 (column 2), A081066, A008299, A000110, A137375.

Programs

  • Maple
    A352607 := (n, k) -> combinat:-bell(k)*add((-1)^(k+j)*binomial(n, n-k+j)* Stirling2(n-k+j, j), j = 0..k):
    seq(seq(A352607(n, k), k = 0..n/2), n = 0..12);
    # Second program:
    egf := k -> combinat[bell](k)*(exp(x) - 1 - x)^k/k!:
    A352607 := (n, k) -> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A352607(n, k), k = 0..n/2)), n=0..12);
    # Recurrence:
    A352607 := proc(n, k) option remember;
    if k > n/2 then 0 elif k = 0 then k^n else k*A352607(n-1, k) +
    combinat[bell](k)/combinat[bell](k-1)*(n-1)*A352607(n-2, k-1) fi end:
    seq(print(seq(A352607(n, k), k=0..n/2)), n=0..12); # Mélika Tebni, Mar 24 2022
  • Mathematica
    T[n_, k_] := BellB[k]*Sum[(-1)^(k+j)*Binomial[n, n-k+j]*StirlingS2[n-k+j, j], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 21 2023 *)

Formula

T(n, k) = (-1)^k*A000110(k)*A137375(n, k) = A000110(k)*A008299(n, k).
T(2*n, n) = A081066(n).
E.g.f. column k: Bell(k)*(exp(x) - 1 - x)^k / k!, k >= 0.
T(n, k) = Bell(k)*Sum_{j=0..k} Sum_{i=0..j} ((-1)^j*(k-j)^(n-i)*binomial(n, i)) / ((k - j)!*(j - i)!).