This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352618 #31 Sep 18 2024 03:50:41 %S A352618 1,4,9,16,25,36,49,64,81,100,144,196,225,256,324,400,441,576,625,729, %T A352618 784,900,1024,1225,1296,1600,1764,2025,2304,2401,2500,2916,3136,3600, %U A352618 3969,4096,4900,5184,5625,6400,6561,7056,8100,9216,9604,10000,11025,11664,12544,14400 %N A352618 Squares that are 7-smooth. %C A352618 Also, distinct terms appearing in A352598, or terms of the form 4^i * 9^j * 25^k * 49^m for i, j, k, m >= 0. %H A352618 Michael De Vlieger, <a href="/A352618/b352618.txt">Table of n, a(n) for n = 1..10000</a> %F A352618 a(n) = A002473(n)^2. - _Pontus von Brömssen_, Mar 24 2022 %F A352618 Sum_{n>=1} 1/a(n) = 1225/768. - _Amiram Eldar_, Mar 24 2022 %e A352618 49 = 7*7, 81 = (3*3)*(3*3), and 100 = (2*5)*(2*5) are terms. %t A352618 Select[Range[120], Max[FactorInteger[#][[;; , 1]]] <= 7 &]^2 (* _Amiram Eldar_, Mar 24 2022 *) %t A352618 With[{n = 15000}, Union@ Flatten@ Table[2^(2 a)*3^(2 b)*5^(2 c)*7^(2 d), {a, 0, Log[4, n]}, {b, 0, Log[9, n/(2^(2 a))]}, {c, 0, Log[25, n/(2^(2 a)*3^(2 b))]}, {d, 0, Log[49, n/(2^(2 a)*3^(2 b)*5^(2 c))]}]] (* _Michael De Vlieger_, Mar 26 2022 *) %o A352618 (Python) %o A352618 from itertools import count, islice %o A352618 def agen(): %o A352618 for i in count(1): %o A352618 k = i %o A352618 for p in [2, 3, 5, 7]: %o A352618 while k%p == 0: %o A352618 k //= p %o A352618 if k == 1: %o A352618 yield i*i %o A352618 print(list(islice(agen(), 50))) %o A352618 (Python) %o A352618 from sympy import integer_log %o A352618 def A352618(n): %o A352618 def bisection(f,kmin=0,kmax=1): %o A352618 while f(kmax) > kmax: kmax <<= 1 %o A352618 while kmax-kmin > 1: %o A352618 kmid = kmax+kmin>>1 %o A352618 if f(kmid) <= kmid: %o A352618 kmax = kmid %o A352618 else: %o A352618 kmin = kmid %o A352618 return kmax %o A352618 def f(x): %o A352618 c = n+x %o A352618 for i in range(integer_log(x,7)[0]+1): %o A352618 for j in range(integer_log(m:=x//7**i,5)[0]+1): %o A352618 for k in range(integer_log(r:=m//5**j,3)[0]+1): %o A352618 c -= (r//3**k).bit_length() %o A352618 return c %o A352618 return bisection(f,n,n)**2 # _Chai Wah Wu_, Sep 17 2024 %o A352618 (Python) # faster for initial segment of sequence %o A352618 import heapq %o A352618 from itertools import islice %o A352618 from sympy import primerange %o A352618 def A352618gen(p=7): # generator of terms %o A352618 v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1)) %o A352618 while True: %o A352618 v = heapq.heappop(h) %o A352618 if v != oldv: %o A352618 yield v*v %o A352618 oldv = v %o A352618 for p in psmooth_primes: %o A352618 heapq.heappush(h, v*p) %o A352618 print(list(islice(A352618gen(), 65))) # _Michael S. Branicky_, Sep 17 2024 %Y A352618 Intersection of A000290 and A002473. %Y A352618 Cf. A352598. %K A352618 nonn %O A352618 1,2 %A A352618 _Michael S. Branicky_, Mar 24 2022