This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352620 #62 Mar 27 2022 13:43:53 %S A352620 1,1,2,2,1,1,2,3,2,0,2,3,2,1,1,2,3,4,2,4,1,3,3,1,4,2,4,3,2,1,1,2,3,4, %T A352620 5,2,4,0,2,4,3,0,3,0,3,4,2,0,4,2,5,4,3,2,1,1,2,3,4,5,6,2,4,6,1,3,5,3, %U A352620 6,2,5,1,4,4,1,5,2,6,3,5,3,1,6,4,2,6,5,4,3,2,1,1,2,3,4,5 %N A352620 Irregular triangle read by rows which are rows of successive n X n matrices M(n) with entries M(n)[i,j] = i*j mod n+1. %C A352620 Each matrix represents all possible products between the elements of Z_(n+1), where Z_k is the ring of integers mod k. %C A352620 Those matrices are symmetric. %C A352620 The first row is equal to the first column which is equal to 1,2,...,n. %H A352620 Onno Cain, <a href="https://arxiv.org/abs/1908.03236">Gaussian Integers, Rings, Finite Fields, and the Magic Square of Squares</a>, arXiv:1908.03236 [math.RA], 2019. %H A352620 Matt Parker and Brady Haran, <a href="https://www.youtube.com/watch?v=FCczHiXPVcA&t=15s">Finite Fields & Return of The Parker Square</a>, Numberphile video (Oct 7, 2021). %e A352620 Matrices begin: %e A352620 n=1: 1, %e A352620 n=2: 1, 2, %e A352620 2, 1, %e A352620 n=3: 1, 2, 3, %e A352620 2, 0, 2, %e A352620 3, 2, 1, %e A352620 n=4: 1, 2, 3, 4, %e A352620 2, 4, 1, 3, %e A352620 3, 1, 4, 2, %e A352620 4, 3, 2, 1; %e A352620 For example, the 6 X 6 matrix generated by Z_7 is the following: %e A352620 1 2 3 4 5 6 %e A352620 2 4 6 1 3 5 %e A352620 3 6 2 5 1 4 %e A352620 4 1 5 2 6 3 %e A352620 5 3 1 6 4 2 %e A352620 6 5 4 3 2 1 %e A352620 The trace of this matrix is 14 = A048153(7). %t A352620 Flatten[Table[Table[Mod[k*Table[i, {i, 1, p - 1}], p], {k, 1, p - 1}], {p, 1, 10}]] %Y A352620 Cf. A048153 (traces), A349099 (permanents), A160255 (sum entries), A088922 (ranks). %Y A352620 Cf. A074930. %K A352620 nonn,tabf %O A352620 1,3 %A A352620 _Luca Onnis_, Mar 24 2022