cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352645 Expansion of e.g.f. exp(3 * x * cosh(x)).

This page as a plain text file.
%I A352645 #16 Feb 18 2025 08:56:52
%S A352645 1,3,9,36,189,1068,6669,47568,363897,2976048,26422929,248498880,
%T A352645 2464625205,25922981568,285884886933,3296418423552,39795656126193,
%U A352645 499998631895808,6526830528863001,88493793850020864,1241919513823360941,18020032474632956928
%N A352645 Expansion of e.g.f. exp(3 * x * cosh(x)).
%F A352645 a(0) = 1; a(n) = 3 * Sum_{k=0..floor((n-1)/2)} (2*k+1) * binomial(n-1,2*k) * a(n-2*k-1).
%F A352645 a(n) = Sum_{k=0..n} 3^k * A185951(n,k). - _Seiichi Manyama_, Feb 18 2025
%t A352645 With[{m = 21}, Range[0, m]! * CoefficientList[Series[Exp[3*x*Cosh[x]], {x, 0, m}], x]] (* _Amiram Eldar_, Mar 26 2022 *)
%o A352645 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(3*x*cosh(x))))
%o A352645 (PARI) a(n) = if(n==0, 1, 3*sum(k=0, (n-1)\2, (2*k+1)*binomial(n-1, 2*k)*a(n-2*k-1)));
%Y A352645 Cf. A003727, A185951, A352644.
%K A352645 nonn
%O A352645 0,2
%A A352645 _Seiichi Manyama_, Mar 25 2022