cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A352988 Matrix inverse of triangle A352650.

Original entry on oeis.org

1, 0, 1, -1, -1, 1, 0, -2, -2, 1, 0, 0, -3, -3, 1, 0, 0, 0, -4, -4, 1, 0, 0, 0, 0, -5, -5, 1, 0, 0, 0, 0, 0, -6, -6, 1, 0, 0, 0, 0, 0, 0, -7, -7, 1, 0, 0, 0, 0, 0, 0, 0, -8, -8, 1, 0, 0, 0, 0, 0, 0, 0, 0, -9, -9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, 1
Offset: 0

Views

Author

Werner Schulte, Apr 13 2022

Keywords

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :   0    1    2    3    4    5    6    7    8    9
======================================================
  0 :   1
  1 :   0    1
  2 :  -1   -1    1
  3 :   0   -2   -2    1
  4 :   0    0   -3   -3    1
  5 :   0    0    0   -4   -4    1
  6 :   0    0    0    0   -5   -5    1
  7 :   0    0    0    0    0   -6   -6    1
  8 :   0    0    0    0    0    0   -7   -7    1
  9 :   0    0    0    0    0    0    0   -8   -8    1
  etc.
		

Crossrefs

Formula

T(n,n) = 1 for n >= 0, and T(n,n-1) = 1 - n for n > 0, and T(n,n-2) = 1 - n for n > 1, and T(n,k) = 0 if n < 0 or k < 0 or n < k or n > k+2.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = (1 + t) * (1 - (1 + x) * t) / (1 - x * t)^2.
Alt. row sums equal (-1)^n for n >= 0.
Matrix product with A094587 yields A097806.
Showing 1-1 of 1 results.