cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352651 a(n) = ( binomial(5*n,2*n)*binomial(5*n/2,2*n)*binomial(2*n,n)^2 ) / binomial(5*n/2,n)^2.

This page as a plain text file.
%I A352651 #36 Dec 26 2024 04:22:57
%S A352651 1,12,378,14700,629850,28540512,1341310320,64676424384,3178603964250,
%T A352651 158529793422000,7999466594747628,407514796591710600,
%U A352651 20924507330066816112,1081581197431986720000,56225684939117297889600,2937292879652230377427200,154108110471294720105987930
%N A352651 a(n) = ( binomial(5*n,2*n)*binomial(5*n/2,2*n)*binomial(2*n,n)^2 ) / binomial(5*n/2,n)^2.
%C A352651 We write x! as shorthand for Gamma(x+1) and binomial(x,y) as shorthand for x!/(y!*(x-y)!) = Gamma(x+1)/(Gamma(y+1)*Gamma(x-y+1)). Given two sequences of numbers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L  we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
%C A352651 It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be rational numbers. See A276098 and the cross references for further examples of this type.
%C A352651 Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k. The case n = k = 1 is easily proved.
%C A352651 More generally, for an integer N not equal to 0 or 1, the height 2 factorial ratio sequence whose n-th term is given by ( binomial(N*n,2*n)* binomial(N*n/2,2*n)* binomial(2*n,n)^2 )/binomial(N*n/2,n)^2 is conjectured to be integral and satisfy the same supercongruences. This is the case N = 5. See A352652 (N = 7)
%H A352651 Peter Bala, <a href="/A276098/a276098.pdf">Some integer ratios of factorials</a>
%H A352651 J. W. Bober, <a href="http://arxiv.org/abs/0709.1977">Factorial ratios, hypergeometric series, and a family of step functions</a>, 2007, arXiv:0709.1977v1 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
%H A352651 K. Soundararajan, <a href="http://doi.org/10.1098/rsta.2018.0444">Integral factorial ratios: irreducible examples with height larger than 1</a>, Phil. Trans. R. Soc.A378: 2018044, 2019.
%F A352651 a(n) = (5*n)!*(3*n/2)!^2/( (3*n)!*(5*n/2)!*n!^2*(n/2)! ).
%F A352651 a(n) = 3*Sum_{k = 0..n} (-1)^(n+k)*binomial(5*n,n-k)*binomial(3*n+k-1,k)^2 for n >= 1 (this formula shows the sequence is integral).
%F A352651 a(n) = 3*Sum_{k = 0..n} binomial(2*n-k-2,n-k)*binomial(3*n-1,k)^2 for n >= 1.
%F A352651 a(n) = 3 * [x^n] ( (1 - x)^(2*n) * P(3*n-1,(1 + x)/(1 - x)) ) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial.
%F A352651 a(n) ~ (sqrt(3)/Pi)*(5^n)^(5/2)*( 1/(2*n) - 2/(15*n^2) + 4/(225*n^3) + O(1/n^4) ).
%F A352651 a(n) = A008978(n)/A275652(n).
%F A352651 a(n) = binomial(3*n/2,n)*A262732(n).
%F A352651 a(n) = 3*(-1)^n*binomial(5*n,n)*hypergeom([-n, 3*n, 3*n], [1, 4*n+1], 1) for n >= 1.
%F A352651 a(n) = 5*(3*n-2)*(3*n-4)*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)/(n^2*(n-1)^2*(3*n- 1)*(3*n-5)) * a(n-2) with a(0) = 1 and a(1) = 12.
%F A352651 a(p) == 12 (mod p^3) for prime p >= 5.
%F A352651 O.g.f.: A(x) = hypergeom([1/10, 3/10, 7/10, 9/10, 1/3, 2/3], [1/6, 5/6, 1/2, 1/2, 1], (5^5)*x^2) + 12*x*hypergeom([3/5, 4/5, 6/5, 7/5, 5/6, 7/6], [2/3, 4/3, 3/2, 3/2, 1], (5^5)*x^2).
%e A352651 Examples of supercongruences:
%e A352651 a(2*7) - a(2) = 56225684939117297889600 - 378 = 2*(3^3)*(7^4)*6553*411473* 160830097 == 0 (mod 7^4).
%e A352651 a(13) - a(1) = 1081581197431986720000 - 12 = (2^2)*3*(13^3)* 41024927834622467 == 0 (mod 13^3)
%p A352651 a := n -> if n = 0 then 1 elif n = 1 then 12 else
%p A352651 5*(3*n - 2)*(3*n - 4)*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/(n^2*(n - 1)^2*(3*n - 1)*(3*n - 5))*a(n-2) end if:
%p A352651 seq(a(n), n = 0..20);
%o A352651 (Python)
%o A352651 from math import factorial
%o A352651 from sympy import factorial2
%o A352651 def A352651(n): return int(factorial(5*n)*factorial2(3*n)**2//factorial(3*n)//factorial2(5*n)//factorial(n)**2//factorial2(n)) # _Chai Wah Wu_, Aug 08 2023
%Y A352651 Cf. A008978, A262732, A275652, A276098, A276100, A276101, A276102, A352652.
%K A352651 nonn,easy
%O A352651 0,2
%A A352651 _Peter Bala_, Mar 25 2022