cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352664 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 - log(1 - x).

This page as a plain text file.
%I A352664 #34 Jun 03 2022 09:33:21
%S A352664 1,1,-1,13,-16,-34,-526,22142,-10424,-160536,-2805408,-29182944,
%T A352664 -374664720,-3220913760,32949033168,11465880121776,-16610113920768,
%U A352664 -96543735968640,-5110200130727808,-130871898552663936,1042965176555775744,-29461082210774712576
%N A352664 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 - log(1 - x).
%F A352664 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + Sum_{n>=1} x^n/n.
%t A352664 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = 1/n - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 22}]
%Y A352664 Cf. A157159, A157164, A348205, A348206, A352404, A352691, A352953.
%K A352664 sign
%O A352664 1,4
%A A352664 _Ilya Gutkovskiy_, May 15 2022