cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352681 a(n) = [x^n] (3*x + 1)*(1 - sqrt(1 - 4*x))/(2*x).

Original entry on oeis.org

1, 4, 5, 11, 29, 84, 258, 825, 2717, 9152, 31382, 109174, 384370, 1366936, 4903140, 17718165, 64442205, 235717800, 866573070, 3200179290, 11865909990, 44158628280, 164881364700, 617507304570, 2319082988274, 8731658843424, 32953192276508, 124635610132460
Offset: 0

Views

Author

Peter Luschny, Mar 27 2022

Keywords

Crossrefs

a(n) = A352680(4, n).

Programs

  • Maple
    alias(PS = ListTools:-PartialSums):
    aList := proc(len) local a, k, P, T; a := 4; P := [1]; T := [1];
    for k from 0 to len-1 do T := [op(T), a]; P := PS([op(P), a]); a := P[-1] od;
    T end: aList(27);
    # Alternative:
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 4 else
    a(n-1)*((14*n + 2)*(2*n - 3))/((7*n - 6)*(n + 1)) fi end: seq(a(n), n = 0..27);

Formula

D-finite with recurrence a(n) = a(n-1)*((14*n + 2)*(2*n - 3))/((7*n - 6)*(n + 1)) for n >= 2.
a(n) = A000108(n)+3*A000108(n-1). - R. J. Mathar, Mar 29 2022