cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352682 Array read by ascending antidiagonals. A(n, k) = (n-1)*Gould(k-1) + Bell(k) for n >= 0 and k >= 1, A(n, 0) = 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 3, 5, 6, 1, 4, 4, 8, 15, 21, 1, 5, 5, 11, 24, 52, 82, 1, 6, 6, 14, 33, 83, 203, 354, 1, 7, 7, 17, 42, 114, 324, 877, 1671, 1, 8, 8, 20, 51, 145, 445, 1400, 4140, 8536, 1, 9, 9, 23, 60, 176, 566, 1923, 6609, 21147, 46814
Offset: 0

Views

Author

Peter Luschny, Mar 28 2022

Keywords

Comments

The array defines a family of Bell-like sequences. The case n = 1 are the Bell numbers A000110, case n = 0 is A032347 and case n = 2 is A038561. The n-th sequence r(k) = T(n, k) is defined for k >= 0 by the recurrence r(k) = Sum_{j=0..k-1} binomial(k-1, j)*r(j) with r(0) = 1 and r(1) = n.

Examples

			Array starts:
n\k 0, 1,  2,  3,  4,   5,    6,    7,     8,      9, ...
---------------------------------------------------------
[0] 1, 0,  1,  2,  6,  21,   82,  354,  1671,   8536, ... A032347
[1] 1, 1,  2,  5, 15,  52,  203,  877,  4140,  21147, ... A000110
[2] 1, 2,  3,  8, 24,  83,  324, 1400,  6609,  33758, ... A038561
[3] 1, 3,  4, 11, 33, 114,  445, 1923,  9078,  46369, ... A038559
[4] 1, 4,  5, 14, 42, 145,  566, 2446, 11547,  58980, ... A352683
[5] 1, 5,  6, 17, 51, 176,  687, 2969, 14016,  71591, ...
[6] 1, 6,  7, 20, 60, 207,  808, 3492, 16485,  84202, ...
[7] 1, 7,  8, 23, 69, 238,  929, 4015, 18954,  96813, ...
[8] 1, 8,  9, 26, 78, 269, 1050, 4538, 21423, 109424, ...
[9] 1, 9, 10, 29, 87, 300, 1171, 5061, 23892, 122035, ...
		

Crossrefs

Diagonals: A352684 (main).
Cf. A040027 (Gould), A352686 (subtriangle).
Compare A352680 for a similar array based on the Catalan numbers.

Programs

  • Julia
    function BellRow(m, len)
        a = m; P = BigInt[1]; T = BigInt[1]
        for n in 1:len
            T = vcat(T, a)
            P = cumsum(vcat(a, P))
            a = P[end]
        end
    T end
    for n in 0:9 BellRow(n, 9) |> println end
  • Maple
    alias(PS = ListTools:-PartialSums):
    BellRow := proc(n, len) local a, k, P, T;
    a := n; P := [1]; T := [1];
    for k from 1 to len-1 do
       T := [op(T), a]; P := PS([a, op(P)]); a := P[-1] od;
    T end: seq(lprint(BellRow(n, 10)), n = 0..9);
  • Mathematica
    nmax = 10;
    BellRow[n_, len_] := Module[{a, k, P, T}, a = n; P = {1}; T = {1};
       For[k = 1, k <= len - 1, k++,
          T = Append[T, a]; P = Accumulate[Join[{a}, P]]; a = P[[-1]]];
       T];
    rows = Table[BellRow[n, nmax + 1], {n, 0, nmax}];
    A[n_, k_] := rows[[n + 1, k + 1]];
    Table[A[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)

Formula

Given a list T let PS(T) denote the list of partial sums of T. Given two list S and T let [S, T] denote the concatenation of the lists. Further let P[end] denote the last element of the list P. Row n of the array with length k can be computed by the following procedure:
A = [n], P = [1], R = [1];
Repeat k-1 times: R = [R, A], P = PS([A, P]), A = [P[end]];
Return R.