cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352686 Triangle read by rows. T(n, k) = (n-1)*Gould(k-1) + Bell(k) for n >= 0 and k >= 1, T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 4, 11, 1, 4, 5, 14, 42, 1, 5, 6, 17, 51, 176, 1, 6, 7, 20, 60, 207, 808, 1, 7, 8, 23, 69, 238, 929, 4015, 1, 8, 9, 26, 78, 269, 1050, 4538, 21423, 1, 9, 10, 29, 87, 300, 1171, 5061, 23892, 122035, 1, 10, 11, 32, 96, 331, 1292, 5584, 26361, 134646, 738424
Offset: 0

Views

Author

Peter Luschny, Mar 31 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2,  3;
[3] 1, 3,  4, 11;
[4] 1, 4,  5, 14, 42;
[5] 1, 5,  6, 17, 51, 176;
[6] 1, 6,  7, 20, 60, 207,  808;
[7] 1, 7,  8, 23, 69, 238,  929, 4015;
[8] 1, 8,  9, 26, 78, 269, 1050, 4538, 21423;
[9] 1, 9, 10, 29, 87, 300, 1171, 5061, 23892, 122035;
		

Crossrefs

Subtriangle of A352682. Main diagonal A352684.
Cf. A000110 (Bell), A040027 (Gould).

Programs

  • Julia
    function A352686Row(n)
        a = BigInt(n == 0 ? 1 : n)
        P = BigInt[1]; T = BigInt[1]
        for k in 1:n
            T = push!(T, a)
            P = cumsum(pushfirst!(P, a))
            a = P[end]
        end
    T end
    for n in 0:9 println(A352686Row(n)) end
  • Maple
    Bell := n -> combinat:-bell(n):
    Gould := proc(n) option remember; ifelse(n = 0, 1,
    add(binomial(n, k-1)*Gould(n-k), k = 1..n)) end:
    T := (n, k) -> (n-1)*Gould(k-1) + Bell(k):
    for n from 0 to 9 do seq(T(n,k), k = 0..n) od;
    # Alternative:
    alias(PS = ListTools:-PartialSums):
    A352686Row := proc(n) local a, k, P, R; a := n; P := [1]; R := [1];
    for k from 1 to n do R := [op(R), a]; P := PS([a, op(P)]); a := P[-1] od; R end:
    seq(print(A352686Row(n)), n = 0..9);
  • Mathematica
    gould[n_] := gould[n] = If[n == 0, 1, Sum[Binomial[n, k+1]*gould[k], {k, 0, n-1}]];
    T[n_, k_] := (n-1) gould[k-1] + BellB[k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 08 2023, after first Maple program *)

Formula

Given a list T let PS(T) denote the list of partial sums of T. Given two list S and T let [S, T] denote the concatenation of the lists. Further let P[end] denote the last element of the list P. Row n of the triangle T can be computed by the following procedure:
A = [n], P = [1], R = [1];
Repeat n times: R = [R, A], P = PS([A, P]), A = [P[end]];
Return R.