cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352691 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + log(1 + x).

This page as a plain text file.
%I A352691 #14 May 15 2022 12:14:11
%S A352691 1,-3,5,-23,204,-1894,16862,-166466,2346712,-37858296,558727872,
%T A352691 -9031080288,185546362416,-3960341036352,83728926109488,
%U A352691 -1961110591316304,50908186083448320,-1384998141007364736,38998680958184088960,-1160052698286814237056,37029733866954589964544
%N A352691 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + log(1 + x).
%F A352691 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 - Sum_{n>=1} (-x)^n/n.
%F A352691 E.g.f.: Sum_{k>=1} mu(k) * log(1 + log(1 + x^k)) / k.
%t A352691 nmax = 21; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Log[1 + x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
%Y A352691 Cf. A157159, A157164, A348205, A348206, A352404, A352664, A352953.
%K A352691 sign
%O A352691 1,2
%A A352691 _Ilya Gutkovskiy_, May 15 2022