cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352694 Expansion of e.g.f. exp(Sum_{k>=1} sigma_2(k) * x^k/k!).

This page as a plain text file.
%I A352694 #16 Apr 05 2022 21:20:26
%S A352694 1,1,6,26,167,1157,9372,82742,806872,8487255,96086764,1159845766,
%T A352694 14866684968,201266031865,2867695938970,42849364911878,
%U A352694 669517721182731,10910196881874549,184997231064875867,3257297876661453487,59443905364431491367,1122496527274459462803
%N A352694 Expansion of e.g.f. exp(Sum_{k>=1} sigma_2(k) * x^k/k!).
%C A352694 Exponential transform of A001157.
%H A352694 Seiichi Manyama, <a href="/A352694/b352694.txt">Table of n, a(n) for n = 0..505</a>
%F A352694 a(0) = 1; a(n) = Sum_{k=1..n} sigma_2(k) * binomial(n-1,k-1) * a(n-k).
%o A352694 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, 2)*x^k/k!))))
%o A352694 (PARI) a(n) = if(n==0, 1, sum(k=1, n, sigma(k, 2)*binomial(n-1, k-1)*a(n-k)));
%Y A352694 Cf. A295739, A274804.
%Y A352694 Cf. A001157, A294362, A352693.
%K A352694 nonn
%O A352694 0,3
%A A352694 _Seiichi Manyama_, Mar 29 2022