This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352702 #15 May 11 2024 11:07:10 %S A352702 1,1,2,4,9,22,55,142,376,1011,2758,7614,21220,59630,168759,480533, %T A352702 1375676,3957075,11430582,33144264,96434321,281447954,823734157, %U A352702 2417092933,7109265120,20955593252,61893804180,183148075432,542885589115,1611809502764,4792612539375 %N A352702 G.f. A(x) satisfies: (1 - x*A(x))^3 = 1 - 3*x - x^3*A(x^3). %C A352702 Essentially an unsigned version of A107092 (after dropping the initial term). %H A352702 Paul D. Hanna, <a href="/A352702/b352702.txt">Table of n, a(n) for n = 0..1200</a> %H A352702 Ira M. Gessel, <a href="https://www.emis.de/journals/SLC/wpapers/s91vortrag/gessel3.pdf">The Amdeberhan-Konvalinka Conjecture and Symmetric Functions</a>, Séminaire Lotharingien Comb. (2024). See p. 83 of 109. %F A352702 G.f. A(x) satisfies: %F A352702 (1) (1 + x*A(-x))^3 = 1 + 3*x + x^3*A(-x^3). %F A352702 (2) A(x) = (1 - (1 - 3*x - x^3*A(x^3))^(1/3))/x. %e A352702 G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 55*x^6 + 142*x^7 + 376*x^8 + 1011*x^9 + 2758*x^10 + 7614*x^11 + ... %e A352702 where %e A352702 (1 - x*A(x))^3 = 1 - 3*x - x^3 - x^6 - 2*x^9 - 4*x^12 - 9*x^15 - 22*x^18 - 55*x^21 - 142*x^24 - 376*x^27 - 1011*x^30 + ... %e A352702 also %e A352702 (1 - 3*x - x^3*A(x^3))^(1/3) = 1 - x - x^2 - 2*x^3 - 4*x^4 - 9*x^5 - 22*x^6 - 55*x^7 - 142*x^8 - 376*x^9 - 1011*x^10 + ... %e A352702 which equals 1 - x*A(x). %o A352702 (PARI) {a(n) = my(A=1+x); for(i=1,n, %o A352702 A = (1 - (1 - 3*x - x^3*subst(A,x,x^3) + x*O(x^(n+1)))^(1/3))/x); %o A352702 polcoeff(A,n)} %o A352702 for(n=0,30,print1(a(n),", ")) %Y A352702 Cf. A107092, A352704, A352706. %K A352702 nonn %O A352702 0,3 %A A352702 _Paul D. Hanna_, Mar 29 2022