This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352726 #17 Apr 01 2022 09:02:41 %S A352726 0,2,1,4,3,6,5,8,7,12,13,14,9,10,11,16,15,24,25,26,27,28,29,30,17,18, %T A352726 19,20,21,22,23,32,31,48,49,50,51,54,52,53,55,56,57,58,59,60,61,62,33, %U A352726 34,35,36,38,39,37,40,41,42,43,44,45,46,47,64,63,96,97,98 %N A352726 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the binary expansions of n and a(n) have no common runs of consecutive 1's. %C A352726 This sequence is a self-inverse permutation of the nonnegative integers. %C A352726 This sequence has similarities with A238757; here we consider runs of consecutive 1's, there individual 1's in binary expansions. %C A352726 The binary expansion of n and a(n) may share some 1's, but cannot have a common run of consecutive 1's (as given by A352724). %H A352726 Rémy Sigrist, <a href="/A352726/b352726.txt">Table of n, a(n) for n = 0..8192</a> %H A352726 Rémy Sigrist, <a href="/A352726/a352726.png">Scatterplot of the first 32769 terms</a> %H A352726 Rémy Sigrist, <a href="/A352726/a352726_2.png">Scatterplot of (x, y) such that x, y < 2^10 and the binary expansions of x and y have no common runs of consecutive 1's</a> %H A352726 Rémy Sigrist, <a href="/A352726/a352726.gp.txt">PARI program</a> %H A352726 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A352726 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A352726 The first terms, alongside the corresponding partitions into runs of 1's, are: %e A352726 n a(n) runs in n runs in a(n) %e A352726 -- ---- --------- ------------ %e A352726 0 0 [] [] %e A352726 1 2 [1] [2] %e A352726 2 1 [2] [1] %e A352726 3 4 [3] [4] %e A352726 4 3 [4] [3] %e A352726 5 6 [1, 4] [6] %e A352726 6 5 [6] [1, 4] %e A352726 7 8 [7] [8] %e A352726 8 7 [8] [7] %e A352726 9 12 [1, 8] [12] %e A352726 10 13 [2, 8] [1, 12] %e A352726 11 14 [3, 8] [14] %e A352726 12 9 [12] [1, 8] %e A352726 13 10 [1, 12] [2, 8] %e A352726 14 11 [14] [3, 8] %e A352726 15 16 [15] [16] %e A352726 16 15 [16] [15] %o A352726 (PARI) See Links section. %Y A352726 Cf. A238757, A332022, A352724. %K A352726 nonn,base %O A352726 0,2 %A A352726 _Rémy Sigrist_, Mar 30 2022