This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352727 #17 Apr 02 2022 17:46:31 %S A352727 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,3,0,1,0,0,0,0,0,0,0, %T A352727 0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,5,0,0,0,1,0,0,0, %U A352727 0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,6,0,0,0,2,0,0 %N A352727 Square array A(n, k), n, k >= 0, read by antidiagonals: the binary expansion of A(n, k) contains the runs of consecutive 1's that appear both in the binary expansions of n and k. %C A352727 We only consider maximal runs of one or more consecutive 1's (as counted by A069010) that completely match in binary expansions of n and k, not simply single common 1's. %H A352727 Rémy Sigrist, <a href="/A352727/b352727.txt">Table of n, a(n) for n = 0..10010</a> %H A352727 Rémy Sigrist, <a href="/A352727/a352727.png">Colored representation of the table for n, k < 2^10</a> (where the hue is function of T(n, k); black pixels denote 0's) %H A352727 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A352727 A(n, k) = A(k, n). %F A352727 A(n, 0) = 0. %F A352727 A(n, n) = n. %F A352727 A(n, 2*n) = 0. %F A352727 A(n, k) <= A004198(n, k) (bitwise AND operator). %F A352727 A(n, n+1) = A352729(n). %e A352727 Table A(n, k) begins: %e A352727 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A352727 ---+------------------------------------------------------ %e A352727 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A352727 1| 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 %e A352727 2| 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 %e A352727 3| 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 %e A352727 4| 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 %e A352727 5| 0 1 0 0 4 5 0 0 0 1 0 0 0 1 0 0 %e A352727 6| 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 %e A352727 7| 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 %e A352727 8| 0 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 %e A352727 9| 0 1 0 0 0 1 0 0 8 9 8 8 0 1 0 0 %e A352727 10| 0 0 2 0 0 0 0 0 8 8 10 8 0 0 0 0 %e A352727 11| 0 0 0 3 0 0 0 0 8 8 8 11 0 0 0 0 %e A352727 12| 0 0 0 0 0 0 0 0 0 0 0 0 12 12 0 0 %e A352727 13| 0 1 0 0 0 1 0 0 0 1 0 0 12 13 0 0 %e A352727 14| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 %e A352727 15| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 %o A352727 (PARI) A352724(n) = { my (r=[], o=0); while (n, my (v=valuation(n+n%2, 2)); if (n%2, r=concat(r, (2^v-1)*2^o)); o+=v; n\=2^v); r } %o A352727 A(n,k) = vecsum(setintersect(A352724(n), A352724(k))) %Y A352727 Cf. A004198, A069010, A352724, A352729. %K A352727 nonn,base,tabl %O A352727 0,13 %A A352727 _Rémy Sigrist_, Mar 30 2022