This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352738 #13 Apr 01 2022 09:04:09 %S A352738 16,64,441,729,81796,1320201,2729104,44488900,34614230401, %T A352738 209453590921,752884200721,5054227881921,8106120765625,14483961408400, %U A352738 433446375390625,530837821446724,1270089068379481,1383781075827264,4819866587217081,7032375864510896656 %N A352738 Squares in A086849. %C A352738 Squares that are partial sums of A000037. %H A352738 Chai Wah Wu, <a href="/A352738/b352738.txt">Table of n, a(n) for n = 1..23</a> %e A352738 a(2) = 64 is a term because 64 = 8^2 = 2+3+5+6+7+8+10+11+12 is a square and the sum of the nonsquares up to 12. %p A352738 R:= NULL: count:= 0: %p A352738 s:= 0: %p A352738 for n from 1 do %p A352738 if issqr(n) then next fi; %p A352738 s:= s+n; %p A352738 if issqr(s) then %p A352738 count:= count+1; %p A352738 R:= R,s; %p A352738 if count = 19 then break fi %p A352738 fi; %p A352738 od: %p A352738 R; %o A352738 (Python) %o A352738 from itertools import islice %o A352738 def A352738_gen(): # generator of terms %o A352738 c, k, ks, m, ms = 0, 1, 2, 1, 1 %o A352738 while True: %o A352738 for n in range(ks,ks+2*k): %o A352738 c += n %o A352738 if c == ms: %o A352738 yield c %o A352738 elif c > ms: %o A352738 ms += 2*m+1 %o A352738 m += 1 %o A352738 ks += 2*k+1 %o A352738 k += 1 %o A352738 A352738_list = list(islice(A352738_gen(),10)) # _Chai Wah Wu_, Mar 31 2022 %Y A352738 Cf. A000037, A086849. %K A352738 nonn %O A352738 1,1 %A A352738 _J. M. Bergot_ and _Robert Israel_, Mar 30 2022 %E A352738 a(20) from _Jon E. Schoenfield_, Mar 31 2022