cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352745 a(n) is the number of Lyndon factors of the Fibonacci string of length n.

This page as a plain text file.
%I A352745 #16 Aug 06 2024 11:33:25
%S A352745 1,1,1,2,2,3,4,4,6,5,8,6,10,7,12,8,14,9,16,10,18,11,20,12,22,13,24,14,
%T A352745 26,15,28,16,30,17,32,18,34,19,36,20,38,21,40,22,42,23,44
%N A352745 a(n) is the number of Lyndon factors of the Fibonacci string of length n.
%C A352745 The Fibonacci string of length n is defined Fibonacci(n) = cat(Fibonacci(n - 1), Fibonacci(n - 2)) for 1 < n and the initial conditions Fibonacci(0) = "1" and Fibonacci(1) = "0", where 'cat' is the operation of concatenating strings. The length of Fibonacci(n) is A352744(1, n). The sequence starts: "1", "0", "01", "010", "01001", "01001010", ...
%C A352745 Apart from the first four terms seems to be identical with A117248.
%H A352745 Guy Melançon, <a href="https://citeseerx.ist.psu.edu/pdf/5b369eca3b04c04ae429b9de318e246d2e9b9fbc">Lyndon factorization of infinite words</a>, STACS 96 (Grenoble, 1996), 147-154, Lecture Notes in Comput. Sci., 1046, Springer, Berlin, 1996.
%H A352745 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lyndon_word">Lyndon word</a>
%e A352745 The Lyndon factorization of the Fibonacci strings of length n = 0..9.
%e A352745 [0] ["1"]
%e A352745 [1] ["0"]
%e A352745 [2] ["01"]
%e A352745 [3] ["01", "0"]
%e A352745 [4] ["01", "001"]
%e A352745 [5] ["01", "00101", "0"]
%e A352745 [6] ["01", "00101", "001", "001"]
%e A352745 [7] ["01", "00101", "0010010100101", "0"]
%e A352745 [8] ["01", "00101", "0010010100101", "00100101", "001", "001"]
%e A352745 [9] ["01", "00101", "0010010100101", "0010010100100101001010010010100101", "0"]
%p A352745 with(StringTools): A352745 := n -> nops(LyndonFactors(Fibonacci(n))):
%p A352745 seq(A352745(n), n = 0..12);
%Y A352745 Cf. A000045, A014707, A074650, A117248, A211100, A352746, A352744.
%K A352745 nonn,more
%O A352745 0,4
%A A352745 _Peter Luschny_, Apr 06 2022