cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352750 a(n) = binary complement of b(n-1) AND b(n); a(1) = 1, where b(n) = A109812(n).

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 5, 9, 0, 4, 1, 2, 0, 17, 24, 0, 6, 10, 0, 16, 8, 4, 2, 8, 16, 2, 0, 48, 41, 0, 20, 36, 0, 24, 36, 0, 18, 32, 8, 4, 32, 24, 0, 32, 16, 3, 8, 0, 39, 98, 0, 28, 96, 0, 28, 80, 0, 41, 81, 16, 8, 4, 2, 1, 4, 8, 1, 0, 48, 68, 0, 48, 64, 3, 32, 64
Offset: 1

Views

Author

Michael De Vlieger, Apr 01 2022

Keywords

Comments

b(n) = A109812(n) is the least k that does not appear in b(1..n-1) that avoids the ON bits in b(n-1).
a(n) is the decimal value of available bits "unused" in k.
If b(n) = 2^m - 1, then a(n) = 0 iff b(n) = 2^m.

Examples

			Relation between a(n) and b(n) = A109812(n). The binary expansion of b(n) = b(n)_2 = A352575(n), showing zeros as "." to accentuate 1 bits:
n    b(n)_2  b(n) a(n)
----------------------
1         1    1    1
2        1.    2    0
3       1..    4    1
4        11    3    0
5      1...    8    4
6       1.1    5    2
7      1.1.   10    0
8     1....   16    5
9       11.    6    9
10     1..1    9    0
11    1..1.   18    4
12     11..   12    1
13    1...1   17    2
14     111.   14    0
15   1.....   32   17
16      111    7   24
...
		

Crossrefs

Programs

  • Mathematica
    c[_] = 0; a[1] = c[1] = 1; u = 2; {1}~Join~Reap[Do[k = u; While[Nand[c[k] == 0, BitAnd[a[i - 1], k] == 0], k++]; Set[{a[i], c[k]}, {k, i}]; Sow[FromDigits[IntegerDigits[BitOr[a[i - 1], a[i]], 2] /. {0 -> 1, 1 -> 0}, 2]]; If[k == u, While[c[u] > 0, u++]], {i, 2, 77}]][[-1, -1]]
  • PARI
    See Links section.

Formula

a(n) = 2^(1 + max(floor(log_2 i), floor(log_2 j))) - (i + j) - 1, with i = A109812(n-1) and j = A109812(n). - Michael De Vlieger, Apr 05 2022