A352751 Modified Sisyphus function of order 4: a(n) is the concatenation of (number of digits of n)(number digits of n congruent to 0 modulo 4)(number of digits of n congruent to 1 modulo 4)(number of digits of n congruent to 2 modulo 4)(number of digits of n congruent to 3 modulo 4).
11000, 10100, 10010, 10001, 11000, 10100, 10010, 10001, 11000, 10100, 21100, 20200, 20110, 20101, 21100, 20200, 20110, 20101, 21100, 20200, 21010, 20110, 20020, 20011, 21010, 20110, 20020, 20011, 21010, 20110, 21001, 20101, 20011, 20002, 21001, 20101, 20011, 20002, 21001, 20101, 22000, 21100, 21010
Offset: 0
Examples
11 has two digits, both congruent to 1 modulo 4, so a(11) = 20200. a(20) = 21010. a(30) = 21001. a(1111123567) = 100622.
References
- M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
Crossrefs
Programs
-
Python
def a(n, order=4): d, m = list(map(int, str(n))), [0]*order for di in d: m[di%order] += 1 return int(str(len(d)) + "".join(map(str, m))) print([a(n) for n in range(37)]) # Michael S. Branicky, Apr 01 2022
Comments