cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352777 a(n) = Sum_{p <= n <= q < 2n, p,q prime} (p * q).

This page as a plain text file.
%I A352777 #4 Apr 02 2022 18:36:13
%S A352777 0,10,40,60,120,180,527,408,697,1020,1680,2016,2952,2419,3608,4879,
%T A352777 6902,5916,10703,9240,12397,15708,20400,22800,22800,22800,28100,28100,
%U A352777 36249,40119,59520,54560,54560,65280,65280,76640,108744,101455,101455,117018,141372,151368,178716
%N A352777 a(n) = Sum_{p <= n <= q < 2n, p,q prime} (p * q).
%C A352777 Total area of all unique p X q rectangles with p,q prime such that p <= n <= q < 2n.
%e A352777 a(5) = 120; the 6 unique p X q rectangles, with p,q prime such that p <= 5 <= q < 10 are: 2 X 5, 2 X 7, 3 X 5, 3 X 7, 5 X 5, and 5 X 7. The total area of all rectangles is 2*5 + 2*7 + 3*5 + 3*7 + 5*5 + 5*7 = 120.
%t A352777 Table[Sum[Sum[k (2 n - i) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]), {k, n}], {i, n}], {n, 100}]
%Y A352777 Cf. A000720 (pi), A035250, A352753, A352754, A352749.
%K A352777 nonn
%O A352777 1,2
%A A352777 _Wesley Ivan Hurt_, Apr 02 2022