This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352788 #10 Apr 08 2022 10:47:28 %S A352788 1,9,25,10510564 %N A352788 Squares in A213544. %C A352788 Squares that are partial sums of A023896. %e A352788 a(3) = 25 is a term because A213544(6) = 25 = 5^2. %p A352788 s:= 1: R:= 1: count:= 1: %p A352788 for n from 2 to 10^6 do %p A352788 s:= s + n/2*numtheory:-phi(n); %p A352788 if issqr(s) then %p A352788 count:= count+1; R:= R, s; %p A352788 fi; %p A352788 od: %p A352788 R; %t A352788 f[1] = 1; f[n_] := n*EulerPhi[n]/2; seq[len_, max_] := Module[{s = {}, sum = 0, c = 0, n = 1}, While[c < len && n < max, sum += f[n]; n++; If[IntegerQ@Sqrt[sum], c++; AppendTo[s, sum]]]; s]; seq[4, 1000] (* _Amiram Eldar_, Apr 07 2022 *) %o A352788 (Python) %o A352788 from itertools import count, islice %o A352788 from sympy import totient %o A352788 def A352788_gen(): # generator of terms %o A352788 c, m, ms = 0, 1, 1 %o A352788 for n in count(1): %o A352788 c += 1 if n <= 2 else n*totient(n)//2 %o A352788 if c == ms: %o A352788 yield c %o A352788 else: %o A352788 while c > ms: %o A352788 ms += 2*m+1 %o A352788 m += 1 %o A352788 A352788_list = list(islice(A352788_gen(),4)) # _Chai Wah Wu_, Apr 08 2022 %Y A352788 Cf. A000290, A023896, A213544. %K A352788 nonn,more %O A352788 1,2 %A A352788 _Robert Israel_, Apr 02 2022