A352790 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not appeared that is a divisor of either a(n-2)+a(n-1) or a(n-2)*a(n-1).
1, 2, 3, 5, 4, 9, 6, 15, 7, 11, 18, 22, 8, 10, 16, 13, 26, 39, 65, 52, 20, 12, 24, 32, 14, 23, 37, 30, 67, 97, 41, 46, 29, 25, 27, 45, 36, 54, 72, 21, 28, 42, 35, 49, 84, 19, 38, 57, 95, 76, 171, 114, 285, 90, 50, 60, 40, 48, 44, 33, 66, 99, 55, 77, 121, 198, 242, 88, 110, 80, 100, 64, 82, 73
Offset: 1
Keywords
Examples
a(4) = 5 as a(2)+a(3) = 5 and a(2)*a(3) = 6. The combined divisors of these two numbers are 1,2,3,5,6, and of those 5 is the smallest that has not appeared.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated log-log scatterplot of a(n), n = 1..2^16, showing records in red, local minima in blue, fixed points in gold, and accentuating primes in green.
- Scott R. Shannon, Line graph of the first 50000 terms.
Programs
-
Mathematica
nn = 74; c[] = 0; u = a[1] = c[1] = 1; a[2] = c[2] = 2; While[c[u] > 0, u++]; Do[k = 1; t = TakeWhile[Reverse@ Union[Divisors[#1 + #2], Divisors[#1*#2]], # >= u &] & @@ {a[i - 2], a[i - 1]}; While[c[t[[-k]]] > 0, k++]; Set[{a[i], c[t[[-k]]]}, {t[[-k]], i}]; If[a[i] == u, While[c[u] > 1, u++]], {i, Length[s] + 1, nn}]; Array[a, nn] (* _Michael De Vlieger, Apr 03 2022 *)
Comments