This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352796 #37 Jul 11 2022 08:35:32 %S A352796 1,2,3,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28, %T A352796 29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,48,49,50,51,52,53, %U A352796 54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,73,74 %N A352796 Numbers m such that {d + m/d : d | m } does not contain consecutive integers. %C A352796 Conjecture: Complement of A072389. %H A352796 Michel Marcus, <a href="/A352796/b352796.txt">Table of n, a(n) for n = 1..10000</a> %t A352796 S[n_]:=Divisors[n]+n/Divisors[n]//Union; Test[n_]:= {aux=S[n];Union[ {False},Table[aux[[i+1]]-aux[[i]] ==1,{i,Length[aux]-1}]]}[[1]] //Last; Select[Range[1000],Test[#]&] %o A352796 (PARI) isok(m) = my(list=List()); fordiv(m, d, listput(list, d+m/d)); my(w = Set(vector(#list-1, k, list[k+1]-list[k]))); #select(x->(x==1), w) == 0; \\ _Michel Marcus_, Jun 09 2022 %o A352796 (Python) %o A352796 from sympy import divisors %o A352796 def ok(n): %o A352796 s = sorted(set(d + n//d for d in divisors(n))) %o A352796 return 1 not in set(s[i+1]-s[i] for i in range(len(s)-1)) %o A352796 print([k for k in range(1, 75) if ok(k)]) # _Michael S. Branicky_, Jul 10 2022 %Y A352796 Cf. A072389, A335572. %K A352796 nonn %O A352796 1,2 %A A352796 _José María Grau Ribas_, Jun 08 2022