cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352799 Inventory sequence of binary weights.

Original entry on oeis.org

0, 1, 1, 0, 2, 3, 1, 0, 3, 4, 2, 0, 4, 7, 2, 1, 0, 5, 9, 4, 1, 0, 6, 11, 5, 2, 0, 7, 12, 7, 4, 0, 8, 14, 7, 6, 0, 9, 14, 9, 7, 0, 10, 14, 11, 10, 0, 11, 14, 12, 12, 0, 12, 14, 15, 13, 1, 0, 13, 15, 15, 15, 4, 0, 14, 16, 15, 16, 5, 0, 15, 18, 17, 16, 6, 0, 16
Offset: 0

Views

Author

David James Sycamore, Apr 03 2022

Keywords

Comments

Record the number of terms with binary weight zero, then successively record those with weights 1,2,... (including in the count the weights of new terms as they are recorded), until reaching a weight w for which there are zero terms with that weight, whereupon record a zero term. Repeat.

Examples

			a(0) = 0 because at the start there are no terms, therefore zero terms with binary weight zero.
a(1) = 1 because the first term (0) has binary weight zero and there is just one such term.
a(2) = 1 since a(1) = 1 has weight 1, and there is only one term with this weight.
a(3) = 0 since there are no terms with weight 2. Reset the count to zero weight and repeat.
a(4) = 2 because now there are 2 terms (a(0), a(3)) which have weight 0. And so on.
As an irregular triangle the sequence begins:
  0;
  1,  1, 0;
  2,  3, 1, 0;
  3,  4, 2, 0;
  4,  7, 2, 1, 0;
  5,  9, 4, 1, 0;
  6, 11, 5, 2, 0;
		

Crossrefs

Programs

Extensions

a(45) and beyond from Michael S. Branicky, Apr 03 2022