A352807 Orders of the finite groups PGammaL_2(K) when K is a finite field with q = A246655(n) elements.
6, 24, 120, 120, 336, 1512, 1440, 1320, 2184, 16320, 4896, 6840, 12144, 31200, 58968, 24360, 29760, 163680, 50616, 68880, 79464, 103776, 235200, 148824, 205320, 226920, 1572480, 300696, 357840, 388944, 492960, 2125440, 571704, 704880, 912576, 1030200, 1092624
Offset: 1
Keywords
Examples
a(6) = 1512 since A246655(6) = 8 = 2^3, so a(6) = 3*A329119(6) = 3*504 = 1512. a(7) = 1440 since A246655(7) = 9 = 3^2, so a(7) = 2*A329119(7) = 2*720 = 1440.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Groupprops, Projective semilinear group
- Mathematics Stack Exchange, Do the groups SL, PGL, and PSL over a field K always have the same automorphism group?
- Wikipedia, Semilinear map
Crossrefs
Programs
-
PARI
[(q+1)*q*(q-1)*isprimepower(q) | q <- [1..200], isprimepower(q)]
Formula
For q = p^r, |PGammaL(2,q)| = r*q*(q^2-1) = r*|PGL(2,q)|. In general, |PGammaL(n,q)| = r*|PGL(n,q)|.
Comments