cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352809 Lexicographically earliest sequence of distinct nonnegative integers such that for any proper divisor d of n the binary expansions of a(d) and a(n) have no common 1's.

This page as a plain text file.
%I A352809 #20 Apr 09 2022 13:11:43
%S A352809 0,1,2,4,3,8,5,10,9,12,6,16,7,18,20,32,11,36,13,48,24,40,14,64,28,56,
%T A352809 52,72,15,96,17,80,25,68,88,128,19,34,104,192,21,160,22,144,224,112,
%U A352809 23,256,26,288,84,320,27,384,120,416,176,208,29,512,30,38,352
%N A352809 Lexicographically earliest sequence of distinct nonnegative integers such that for any proper divisor d of n the binary expansions of a(d) and a(n) have no common 1's.
%C A352809 This sequence is a bijection from the positive integers onto the nonnegative integers (with inverse A353266); as a(1) = 0, for any prime number p, a(p) is the least value not yet in the sequence, and eventually every nonnegative integer will appear in the sequence.
%H A352809 Rémy Sigrist, <a href="/A352809/b352809.txt">Table of n, a(n) for n = 1..10000</a>
%H A352809 Rémy Sigrist, <a href="/A352809/a352809.gp.txt">PARI program</a>
%H A352809 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A352809 The first terms, alongside their binary expansion, proper divisors and implied forbidden bits, are:
%e A352809   n   a(n)  bin(a(n))  proper divisors  bin(forbidden)
%e A352809   --  ----  ------     ---------------  --------------
%e A352809    1     0          0  {}                            0
%e A352809    2     1          1  {1}                           0
%e A352809    3     2         10  {1}                           0
%e A352809    4     4        100  {1, 2}                        1
%e A352809    5     3         11  {1}                           0
%e A352809    6     8       1000  {1, 2, 3}                    11
%e A352809    7     5        101  {1}                           0
%e A352809    8    10       1010  {1, 2, 3}                   101
%e A352809    9     9       1001  {1, 2}                       10
%e A352809   10    12       1100  {1, 2, 3}                    11
%e A352809   11     6        110  {1}                           0
%e A352809   12    16      10000  {1, 2, 3, 4, 5}            1111
%e A352809   13     7        111  {1}                           0
%e A352809   14    18      10010  {1, 2, 3}                   101
%o A352809 (PARI) See Links section.
%Y A352809 Cf. A027751, A353266 (inverse).
%K A352809 nonn,base
%O A352809 1,3
%A A352809 _Rémy Sigrist_, Apr 04 2022