This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352809 #20 Apr 09 2022 13:11:43 %S A352809 0,1,2,4,3,8,5,10,9,12,6,16,7,18,20,32,11,36,13,48,24,40,14,64,28,56, %T A352809 52,72,15,96,17,80,25,68,88,128,19,34,104,192,21,160,22,144,224,112, %U A352809 23,256,26,288,84,320,27,384,120,416,176,208,29,512,30,38,352 %N A352809 Lexicographically earliest sequence of distinct nonnegative integers such that for any proper divisor d of n the binary expansions of a(d) and a(n) have no common 1's. %C A352809 This sequence is a bijection from the positive integers onto the nonnegative integers (with inverse A353266); as a(1) = 0, for any prime number p, a(p) is the least value not yet in the sequence, and eventually every nonnegative integer will appear in the sequence. %H A352809 Rémy Sigrist, <a href="/A352809/b352809.txt">Table of n, a(n) for n = 1..10000</a> %H A352809 Rémy Sigrist, <a href="/A352809/a352809.gp.txt">PARI program</a> %H A352809 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A352809 The first terms, alongside their binary expansion, proper divisors and implied forbidden bits, are: %e A352809 n a(n) bin(a(n)) proper divisors bin(forbidden) %e A352809 -- ---- ------ --------------- -------------- %e A352809 1 0 0 {} 0 %e A352809 2 1 1 {1} 0 %e A352809 3 2 10 {1} 0 %e A352809 4 4 100 {1, 2} 1 %e A352809 5 3 11 {1} 0 %e A352809 6 8 1000 {1, 2, 3} 11 %e A352809 7 5 101 {1} 0 %e A352809 8 10 1010 {1, 2, 3} 101 %e A352809 9 9 1001 {1, 2} 10 %e A352809 10 12 1100 {1, 2, 3} 11 %e A352809 11 6 110 {1} 0 %e A352809 12 16 10000 {1, 2, 3, 4, 5} 1111 %e A352809 13 7 111 {1} 0 %e A352809 14 18 10010 {1, 2, 3} 101 %o A352809 (PARI) See Links section. %Y A352809 Cf. A027751, A353266 (inverse). %K A352809 nonn,base %O A352809 1,3 %A A352809 _Rémy Sigrist_, Apr 04 2022