cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352812 Lexicographically earliest sequence of distinct nonnegative integers such that for any n and k coprime the binary expansions of a(n) and a(k) have no common 1's.

This page as a plain text file.
%I A352812 #13 Apr 09 2022 17:38:15
%S A352812 0,1,2,4,8,3,16,5,32,9,64,6,128,17,10,256,512,7,1024,12,18,65,2048,33,
%T A352812 4096,129,34,20,8192,11,16384,257,66,260,24,35,32768,261,130,13,65536,
%U A352812 19,131072,68,40,2049,262144,36,524288,264,514,132,1048576,37,72,21
%N A352812 Lexicographically earliest sequence of distinct nonnegative integers such that for any n and k coprime the binary expansions of a(n) and a(k) have no common 1's.
%C A352812 The n-th row of A038566 gives the k's to consider when computing a(n).
%H A352812 Rémy Sigrist, <a href="/A352812/b352812.txt">Table of n, a(n) for n = 1..10000</a>
%H A352812 Rémy Sigrist, <a href="/A352812/a352812.png">Colored logarithmic scatterplot of the first 10000 terms</a> (where the color is function of A052126(n))
%H A352812 Rémy Sigrist, <a href="/A352812/a352812.gp.txt">PARI program</a>
%e A352812 The first terms, alongside their binary expansion, the corresponding k's and the implied forbidden bits, are:
%e A352812   n   a(n)  bin(a(n))  k's                              bin(forbidden)
%e A352812   --  ----  ---------  -------------------------------  --------------
%e A352812    1     0          0  {1}                                           0
%e A352812    2     1          1  {1}                                           0
%e A352812    3     2         10  {1, 2}                                        1
%e A352812    4     4        100  {1, 3}                                       10
%e A352812    5     8       1000  {1, 2, 3, 4}                                111
%e A352812    6     3         11  {1, 5}                                     1000
%e A352812    7    16      10000  {1, 2, 3, 4, 5, 6}                         1111
%e A352812    8     5        101  {1, 3, 5, 7}                              11010
%e A352812    9    32     100000  {1, 2, 4, 5, 7, 8}                        11101
%e A352812   10     9       1001  {1, 3, 7, 9}                             110010
%e A352812   11    64    1000000  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}          111111
%e A352812   12     6        110  {1, 5, 7, 11}                           1011000
%o A352812 (PARI) See Links section.
%Y A352812 Cf. A038566, A052126, A352809.
%K A352812 nonn,base
%O A352812 1,3
%A A352812 _Rémy Sigrist_, Apr 04 2022