This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352826 #9 May 15 2022 11:45:24 %S A352826 1,3,5,6,7,10,11,12,13,14,17,19,20,22,23,24,25,26,28,29,31,34,35,37, %T A352826 38,40,41,43,44,46,47,48,49,50,52,53,55,56,58,59,61,62,65,67,68,70,71, %U A352826 73,74,75,76,77,79,80,82,83,85,86,88,89,91,92,94,95,96,97 %N A352826 Heinz numbers of integer partitions y without a fixed point y(i) = i. Such a fixed point is unique if it exists. %C A352826 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A352826 The terms together with their prime indices begin: %e A352826 1: () 24: (2,1,1,1) 47: (15) %e A352826 3: (2) 25: (3,3) 48: (2,1,1,1,1) %e A352826 5: (3) 26: (6,1) 49: (4,4) %e A352826 6: (2,1) 28: (4,1,1) 50: (3,3,1) %e A352826 7: (4) 29: (10) 52: (6,1,1) %e A352826 10: (3,1) 31: (11) 53: (16) %e A352826 11: (5) 34: (7,1) 55: (5,3) %e A352826 12: (2,1,1) 35: (4,3) 56: (4,1,1,1) %e A352826 13: (6) 37: (12) 58: (10,1) %e A352826 14: (4,1) 38: (8,1) 59: (17) %e A352826 17: (7) 40: (3,1,1,1) 61: (18) %e A352826 19: (8) 41: (13) 62: (11,1) %e A352826 20: (3,1,1) 43: (14) 65: (6,3) %e A352826 22: (5,1) 44: (5,1,1) 67: (19) %e A352826 23: (9) 46: (9,1) 68: (7,1,1) %t A352826 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352826 Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==0&] %Y A352826 * = unproved %Y A352826 *These partitions are counted by A064428, strict A352828. %Y A352826 The complement is A352827. %Y A352826 The reverse version is A352830, counted by A238394. %Y A352826 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352826 A001222 counts prime indices, distinct A001221. %Y A352826 *A001522 counts partitions with a fixed point. %Y A352826 A008290 counts permutations by fixed points, nonfixed A098825. %Y A352826 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352826 A115720 and A115994 count partitions by their Durfee square. %Y A352826 A122111 represents partition conjugation using Heinz numbers. %Y A352826 A124010 gives prime signature, sorted A118914. %Y A352826 A238349 counts compositions by fixed points, complement A352523. %Y A352826 A238352 counts reversed partitions by fixed points, rank statistic A352822. %Y A352826 A238395 counts reversed partitions with a fixed point, ranked by A352872. %Y A352826 A352833 counts partitions by fixed points. %Y A352826 Cf. A062457, A064410, A065770, A093641, A257990, A342192, A352486, A352823, A352824, A352825, A352831, A352832. %K A352826 nonn %O A352826 1,2 %A A352826 _Gus Wiseman_, Apr 06 2022