This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352827 #9 May 15 2022 11:45:53 %S A352827 2,4,8,9,15,16,18,21,27,30,32,33,36,39,42,45,51,54,57,60,63,64,66,69, %T A352827 72,78,81,84,87,90,93,99,102,108,111,114,117,120,123,125,126,128,129, %U A352827 132,135,138,141,144,153,156,159,162,168,171,174,175,177,180,183 %N A352827 Heinz numbers of integer partitions y with a fixed point y(i) = i. Such a fixed point is unique if it exists. %C A352827 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A352827 The terms together with their prime indices begin: %e A352827 2: (1) %e A352827 4: (1,1) %e A352827 8: (1,1,1) %e A352827 9: (2,2) %e A352827 15: (3,2) %e A352827 16: (1,1,1,1) %e A352827 18: (2,2,1) %e A352827 21: (4,2) %e A352827 27: (2,2,2) %e A352827 30: (3,2,1) %e A352827 32: (1,1,1,1,1) %e A352827 33: (5,2) %e A352827 36: (2,2,1,1) %e A352827 39: (6,2) %e A352827 42: (4,2,1) %e A352827 45: (3,2,2) %e A352827 51: (7,2) %e A352827 54: (2,2,2,1) %e A352827 For example, the partition (3,2,2) with Heinz number 45 has a fixed point at position 2, so 45 is in the sequence. %t A352827 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352827 Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==1&] %Y A352827 * = unproved %Y A352827 *These partitions are counted by A001522, strict A352829. %Y A352827 *The complement is A352826, counted by A064428. %Y A352827 The complement reverse version is A352830, counted by A238394. %Y A352827 The reverse version is A352872, counted by A238395 %Y A352827 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352827 A001222 counts prime indices, distinct A001221. %Y A352827 A008290 counts permutations by fixed points, unfixed A098825. %Y A352827 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352827 A115720 and A115994 count partitions by their Durfee square. %Y A352827 A122111 represents partition conjugation using Heinz numbers. %Y A352827 A124010 gives prime signature, sorted A118914, conjugate rank A238745. %Y A352827 A238349 counts compositions by fixed points, complement A352523. %Y A352827 A238352 counts reversed partitions by fixed points, rank statistic A352822. %Y A352827 A352828 counts strict partitions without a fixed point. %Y A352827 A352833 counts partitions by fixed points. %Y A352827 Cf. A062457, A064410, A065770, A093641, A257990, A342192, A352486, A352823, A352824 (characteristic function), A352825, A352831. %K A352827 nonn %O A352827 1,1 %A A352827 _Gus Wiseman_, Apr 06 2022