This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352828 #14 Jul 22 2024 16:45:17 %S A352828 1,0,1,2,2,2,2,3,4,6,8,10,12,14,16,19,22,26,32,38,46,56,66,78,92,106, %T A352828 123,142,162,186,214,244,280,322,368,422,484,552,630,718,815,924,1046, %U A352828 1180,1330,1498,1682,1888,2118,2372,2656,2972,3322,3712,4146,4626 %N A352828 Number of strict integer partitions y of n with no fixed points y(i) = i. %H A352828 Alois P. Heinz, <a href="/A352828/b352828.txt">Table of n, a(n) for n = 0..5000</a> %F A352828 G.f.: Sum_{n>=0} q^(n*(3*n+1)/2)*Product_{k=1..n} (1+q^k)/(1-q^k). - _Jeremy Lovejoy_, Sep 26 2022 %e A352828 The a(0) = 1 through a(12) = 12 partitions (A-C = 10..12; empty column indicated by dot; 0 is the empty partition): %e A352828 0 . 2 3 4 5 6 7 8 9 A B C %e A352828 21 31 41 51 43 53 54 64 65 75 %e A352828 61 71 63 73 74 84 %e A352828 431 81 91 83 93 %e A352828 432 532 A1 B1 %e A352828 531 541 542 642 %e A352828 631 632 651 %e A352828 4321 641 732 %e A352828 731 741 %e A352828 5321 831 %e A352828 5421 %e A352828 6321 %t A352828 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352828 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]==0&]],{n,0,30}] %Y A352828 The version for permutations is A000166, complement A002467. %Y A352828 The reverse version is A025147, complement A238395, non-strict A238394. %Y A352828 The non-strict version is A064428 (unproved, ranked by A352826 or A352873). %Y A352828 The version for compositions is A238351, complement A352875. %Y A352828 The complement is A352829, non-strict A001522 (unproved, ranked by A352827 or A352874). %Y A352828 A000041 counts partitions, strict A000009. %Y A352828 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352828 A008290 counts permutations by fixed points, unfixed A098825. %Y A352828 A115720 and A115994 count partitions by their Durfee square. %Y A352828 A238349 counts compositions by fixed points, complement A352523. %Y A352828 A238352 counts reversed partitions by fixed points, rank statistic A352822. %Y A352828 A352833 counts partitions by fixed points. %Y A352828 Cf. A008292, A064410, A111133, A114088, A118199, A188674, A257990, A352824, A352825, A352830, A352872. %K A352828 nonn %O A352828 0,4 %A A352828 _Gus Wiseman_, May 15 2022