This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352829 #14 Oct 16 2022 23:32:49 %S A352829 0,1,0,0,0,1,2,2,2,2,2,2,3,4,6,8,10,12,14,16,18,20,23,26,30,36,42,50, %T A352829 60,70,82,96,110,126,144,163,184,208,234,264,298,336,380,430,486,550, %U A352829 622,702,792,892,1002,1125,1260,1408,1572,1752,1950,2168,2408,2672 %N A352829 Number of strict integer partitions y of n with a fixed point y(i) = i. %F A352829 G.f.: Sum_{n>=1} q^(n*(3*n-1)/2)*Product_{k=1..n-1} (1+q^k)/(1-q^k). - _Jeremy Lovejoy_, Sep 26 2022 %e A352829 The a(11) = 2 through a(17) = 12 partitions (A-F = 10..15): %e A352829 (92) (A2) (B2) (C2) (D2) (E2) (F2) %e A352829 (821) (543) (643) (653) (753) (763) (863) %e A352829 (921) (A21) (743) (843) (853) (953) %e A352829 (5431) (B21) (C21) (943) (A43) %e A352829 (5432) (6432) (D21) (E21) %e A352829 (6431) (6531) (6532) (7532) %e A352829 (7431) (7432) (7631) %e A352829 (54321) (7531) (8432) %e A352829 (8431) (8531) %e A352829 (64321) (9431) %e A352829 (65321) %e A352829 (74321) %t A352829 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352829 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]>0&]],{n,0,30}] %Y A352829 The non-strict version is A001522 (unproved, ranked by A352827 or A352874). %Y A352829 The version for permutations is A002467, complement A000166. %Y A352829 The reverse version is A096765 (or A025147 shifted right once). %Y A352829 The non-strict reverse version is A238395, ranked by A352872. %Y A352829 The complement is counted by A352828, non-strict A064428 (unproved, ranked by A352826 or A352873). %Y A352829 The version for compositions is A352875, complement A238351. %Y A352829 A000041 counts partitions, strict A000009. %Y A352829 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352829 A008290 counts permutations by fixed points, unfixed A098825. %Y A352829 A115720 and A115994 count partitions by their Durfee square. %Y A352829 A238349 counts compositions by fixed points, complement A352523. %Y A352829 A238352 counts reversed partitions by fixed points, rank statistic A352822. %Y A352829 A238394 counts reversed partitions without a fixed point, ranked by A352830. %Y A352829 A352833 counts partitions by fixed points. %Y A352829 Cf. A008292, A064410, A111133, A114088, A118199, A188674, A257990, A352823, A352824, A352825, A352832. %K A352829 nonn %O A352829 0,7 %A A352829 _Gus Wiseman_, May 15 2022