This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352830 #7 May 15 2022 11:47:54 %S A352830 1,3,5,7,11,13,15,17,19,21,23,25,29,31,33,35,37,39,41,43,47,49,51,53, %T A352830 55,57,59,61,65,67,69,71,73,77,79,83,85,87,89,91,93,95,97,101,103,105, %U A352830 107,109,111,113,115,119,121,123,127,129,131,133,137,139,141 %N A352830 Numbers whose weakly increasing prime indices y have no fixed points y(i) = i. %C A352830 First differs from A325128 in lacking 75. %C A352830 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A352830 All terms are odd. %e A352830 The terms together with their prime indices begin: %e A352830 1: {} 35: {3,4} 69: {2,9} 105: {2,3,4} %e A352830 3: {2} 37: {12} 71: {20} 107: {28} %e A352830 5: {3} 39: {2,6} 73: {21} 109: {29} %e A352830 7: {4} 41: {13} 77: {4,5} 111: {2,12} %e A352830 11: {5} 43: {14} 79: {22} 113: {30} %e A352830 13: {6} 47: {15} 83: {23} 115: {3,9} %e A352830 15: {2,3} 49: {4,4} 85: {3,7} 119: {4,7} %e A352830 17: {7} 51: {2,7} 87: {2,10} 121: {5,5} %e A352830 19: {8} 53: {16} 89: {24} 123: {2,13} %e A352830 21: {2,4} 55: {3,5} 91: {4,6} 127: {31} %e A352830 23: {9} 57: {2,8} 93: {2,11} 129: {2,14} %e A352830 25: {3,3} 59: {17} 95: {3,8} 131: {32} %e A352830 29: {10} 61: {18} 97: {25} 133: {4,8} %e A352830 31: {11} 65: {3,6} 101: {26} 137: {33} %e A352830 33: {2,5} 67: {19} 103: {27} 139: {34} %t A352830 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352830 Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==0&] %Y A352830 * = unproved %Y A352830 These partitions are counted by A238394, strict A025147. %Y A352830 These are the zeros of A352822. %Y A352830 *The reverse version is A352826, counted by A064428 (strict A352828). %Y A352830 *The complement reverse version is A352827, counted by A001522. %Y A352830 The complement is A352872, counted by A238395. %Y A352830 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352830 A001222 counts prime indices, distinct A001221. %Y A352830 A008290 counts permutations by fixed points, nonfixed A098825. %Y A352830 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352830 A114088 counts partitions by excedances. %Y A352830 A115720 and A115994 count partitions by their Durfee square. %Y A352830 A122111 represents partition conjugation using Heinz numbers. %Y A352830 A124010 gives prime signature, sorted A118914, conjugate rank A238745. %Y A352830 A238349 counts compositions by fixed points, complement A352523. %Y A352830 A238352 counts reversed partitions by fixed points. %Y A352830 A352833 counts partitions by fixed points. %Y A352830 Cf. A062457, A064410, A065770, A093641, A257990, A342192, A352486, A352823, A352824, A352825, A352831. %K A352830 nonn %O A352830 1,2 %A A352830 _Gus Wiseman_, Apr 06 2022