This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352831 #7 May 15 2022 11:48:35 %S A352831 2,4,8,9,10,12,14,16,22,24,26,27,28,32,34,36,38,40,44,46,48,52,58,60, %T A352831 62,63,64,68,70,72,74,75,76,80,81,82,86,88,92,94,96,98,99,104,106,108, %U A352831 110,112,116,117,118,120,122,124,125,128,130,132,134,135,136 %N A352831 Numbers whose weakly increasing prime indices y have exactly one fixed point y(i) = i. %C A352831 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A352831 The terms together with their prime indices begin: %e A352831 2: {1} 36: {1,1,2,2} 74: {1,12} %e A352831 4: {1,1} 38: {1,8} 75: {2,3,3} %e A352831 8: {1,1,1} 40: {1,1,1,3} 76: {1,1,8} %e A352831 9: {2,2} 44: {1,1,5} 80: {1,1,1,1,3} %e A352831 10: {1,3} 46: {1,9} 81: {2,2,2,2} %e A352831 12: {1,1,2} 48: {1,1,1,1,2} 82: {1,13} %e A352831 14: {1,4} 52: {1,1,6} 86: {1,14} %e A352831 16: {1,1,1,1} 58: {1,10} 88: {1,1,1,5} %e A352831 22: {1,5} 60: {1,1,2,3} 92: {1,1,9} %e A352831 24: {1,1,1,2} 62: {1,11} 94: {1,15} %e A352831 26: {1,6} 63: {2,2,4} 96: {1,1,1,1,1,2} %e A352831 27: {2,2,2} 64: {1,1,1,1,1,1} 98: {1,4,4} %e A352831 28: {1,1,4} 68: {1,1,7} 99: {2,2,5} %e A352831 32: {1,1,1,1,1} 70: {1,3,4} 104: {1,1,1,6} %e A352831 34: {1,7} 72: {1,1,1,2,2} 106: {1,16} %e A352831 For example, 63 is in the sequence because its prime indices {2,2,4} have a unique fixed point at the second position. %t A352831 pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; %t A352831 Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==1&] %Y A352831 * = unproved %Y A352831 These are the positions of 1's in A352822. %Y A352831 *The reverse version for no fixed points is A352826, counted by A064428. %Y A352831 *The reverse version is A352827, counted by A001522 (strict A352829). %Y A352831 The version for no fixed points is A352830, counted by A238394. %Y A352831 These partitions are counted by A352832, compositions A240736. %Y A352831 Allowing more than one fixed point gives A352872, counted by A238395. %Y A352831 A000700 counts self-conjugate partitions, ranked by A088902. %Y A352831 A001222 counts prime indices, distinct A001221. %Y A352831 A008290 counts permutations by fixed points, nonfixed A098825. %Y A352831 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352831 A115720 and A115994 count partitions by their Durfee square. %Y A352831 A238349 counts compositions by fixed points, complement A352523. %Y A352831 A238352 counts reversed partitions by fixed points. %Y A352831 A352833 counts partitions by fixed points. %Y A352831 Cf. A062457, A064410, A065770, A177510, A257990, A342192, A349158, A351983, A352520, A352823, A352824. %K A352831 nonn %O A352831 1,1 %A A352831 _Gus Wiseman_, Apr 08 2022