A352832 Number of reversed integer partitions y of n with exactly one fixed point y(i) = i.
0, 1, 1, 1, 4, 3, 7, 7, 14, 19, 24, 32, 46, 60, 85, 109, 140, 179, 239, 300, 397, 495, 636, 790, 995, 1239, 1547, 1926, 2396, 2942, 3643, 4432, 5435, 6602, 8038, 9752, 11842, 14292, 17261, 20714, 24884, 29733, 35576, 42375, 50522, 60061, 71363, 84551, 100101
Offset: 0
Keywords
Examples
The a(0) = 0 through a(8) = 14 partitions (empty column indicated by dot): . (1) (11) (111) (13) (14) (15) (16) (17) (22) (1112) (114) (115) (116) (112) (11111) (222) (1123) (134) (1111) (1113) (11113) (224) (1122) (11122) (233) (11112) (111112) (1115) (111111) (1111111) (2222) (11114) (11123) (11222) (111113) (111122) (1111112) (11111111) For example, the reversed partition (2,2,4) has a unique fixed point at the second position.
Crossrefs
Programs
-
Mathematica
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; Table[Length[Select[Reverse/@IntegerPartitions[n],pq[#]==1&]],{n,0,30}]
Comments